Real-time Interpolation Method For Sparse LiDAR Point Cloud Using RGB Camera

被引:4
作者
Hasegawa, Tomohiko [1 ]
Emaru, Takanori [2 ]
Ravankar, Ankit A. [2 ]
机构
[1] Hokkaido Univ, Grad Sch Engn, Div Human Mech Syst & Design Engn, Sapporo, Hokkaido 0601628, Japan
[2] Hokkaido Univ, Fac Engn, Div Human Mech Syst & Design Engn, Sapporo, Hokkaido 0608628, Japan
来源
2021 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII) | 2021年
关键词
LiDAR; Depth enhancement; Sensor fusion; Autonomous driving;
D O I
10.1109/IEEECONF49454.2021.9382760
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
LiDAR (Light Detection and Ranging) sensor-based mapping and navigation is one of the fundamental techniques for achieving autonomous driving capabilities in urban scenarios. LiDARs can generate long-distance omni-directional measurements of its surrounding that is crucial for object detection and obstacle avoidance for autonomous vehicles. Currently, the most popular LiDAR sensors used for the application of autonomous driving are 360-degree rotating multi-layer type sensor. These are expensive for general use and mainly suffer from poor vertical resolution. In this study, we propose a method of LiDAR point cloud interpolation in real-time using information from an RGB camera. We propose a method to treat sparse point cloud as a depth image which enables us to apply depth enhancement methods to the point cloud. Additionally, we propose a new depth enhancement method with image segmentation for point cloud and compare its accuracy with existing methods. From the results, we present the usefulness of introducing depth image and applying the new depth enhancement method for LiDAR point cloud.
引用
收藏
页码:421 / 425
页数:5
相关论文
共 25 条
[1]  
Diebel James, 2005, P 18 INT C NEUR INF
[2]   Efficient graph-based image segmentation [J].
Felzenszwalb, PF ;
Huttenlocher, DP .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) :167-181
[3]  
Garcia F., 2011, Proceedings of the 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS 2011), P42, DOI 10.1109/AVSS.2011.6027291
[4]   Real-time depth enhancement by fusion for RGB-D cameras [J].
Garcia, Frederic ;
Aouada, Djamila ;
Solignac, Thomas ;
Mirbach, Bruno ;
Ottersten, Bjoern .
IET COMPUTER VISION, 2013, 7 (05) :335-345
[5]   PIXEL WEIGHTED AVERAGE STRATEGY FOR DEPTH SENSOR DATA FUSION [J].
Garcia, Frederic ;
Mirbach, Bruno ;
Ottersten, Bjorn ;
Grandidier, Frederic ;
Cuesta, Angel .
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, :2805-2808
[6]  
Ji Zhang, 2014, RSS
[7]  
Jia ZY, 2011, IEEE IMAGE PROC, P869, DOI 10.1109/ICIP.2011.6116696
[8]   Autoware on Board: Enabling Autonomous Vehicles with Embedded Systems [J].
Kato, Shinpei ;
Tokunaga, Shota ;
Maruyama, Yuya ;
Maeda, Seiya ;
Hirabayashi, Manato ;
Kitsukawa, Yuki ;
Monrroy, Abraham ;
Ando, Tomohito ;
Fujii, Yusuke ;
Azumi, Takuya .
2018 9TH ACM/IEEE INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SYSTEMS (ICCPS 2018), 2018, :287-296
[9]  
Kidono K, 2011, IEEE INT VEH SYM, P405, DOI 10.1109/IVS.2011.5940433
[10]  
Kopf J, 2007, ACM T GRAPHIC, V26, DOI [10.1145/1239451.1239547, 10.1145/1276377.1276497]