Carbonization of Cellulose in Supercritical CO2 for Value-Added Carbon

被引:2
|
作者
Burra, Kiran G. [1 ]
Daristotle, Nick [1 ]
Gupta, Ashwani K. [1 ]
机构
[1] Univ Maryland, Dept Mech Engn, Combust Lab, College Pk, MD 20742 USA
来源
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME | 2021年 / 143卷 / 07期
关键词
supercritical CO2; carbonization; cellulose; high-value carbon; carbon microspheres; alternative energy sources; energy extraction of energy from its natural resource; energy from biomass; energy storage systems; HYDROTHERMAL CARBONIZATION; RAMAN-SPECTROSCOPY; ACTIVATED CARBON; QUANTUM DOTS; GRAPHENE; HYDROCHAR; DIOXIDE; BIOMASS; PRETREATMENT; NANOSHEETS;
D O I
10.1115/1.4050634
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, carbonization of biomass in the presence of supercritical CO2 is investigated to obtain carbon solids with enhanced properties and potential to provide a sustainable pathway for high-value solid products which are currently resourced from expensive and carbon driven fossil-fuel routes. Carbonization of cellulose was carried out in supercritical CO2 at temperatures of 523 K and 623 K at similar to 100 bar pressure in a stirred reactor for 1-8 h of residence times. The obtained solid residue was characterized for morphology using scanning electron microscopy (SEM), surface graphitization using Raman spectroscopy, thermal stability using thermogravimetric analysis (TGA), and crystallinity using powder X-ray diffraction (XRD). The solid chars were found to be dominated by clusters of microspheres (<5 mu m), especially at temperatures of 623 K. Raman spectroscopy revealed the formation of graphitic crystallite units connected by sp(3) carbons (i.e., aliphatic) suggesting significant graphitization. G-band peak ratio was found to be highest for a residence time of 5 h for both the temperatures. TGA data revealed that higher carbonization temperature led to higher thermal decomposition peaks of the chars. The peak value of thermal decomposition ranged between 700 and 800 K for char obtained at 523 K and between 750 and 900 K for char at 623 K. The values were significantly higher than the decomposition peak cellulose at similar to 610 K. Proximate analysis results revealed significant increase of fixed carbon content compared with cellulose. Fixed carbon to volatile content ratios revealed increase from 0.052 in cellulose to values ranging from 1.4 to 4.3 making these chars similar in character to coal (with ranking of bituminous coal and petroleum coke). The net yield of solid chars from carbonization was around 50-66% depending upon the extent of carbonization. These results suggest this pathway to produce high yields of high-quality carbon solids with low volatile content, high thermal stability, and significant graphitization. The graphitized carbon offers potential applications in catalysis, electrode materials, pollutant absorption, and energy storage and solid fuels while avoiding drying to remove moisture unlike pyrolysis.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Transformation of CO2 to Value-Added Materials
    Khoo, Rebecca Shu Hui
    Luo, He-Kuan
    Braunstein, Pierre
    Hor, T. S. Andy
    JOURNAL OF MOLECULAR AND ENGINEERING MATERIALS, 2015, 3 (1-2)
  • [2] Photoelectrochemical Conversion of Carbon Dioxide (CO2) into Fuels and Value-Added Products
    Kumaravel, Vignesh
    Bartlett, John
    Pillai, Suresh C.
    ACS ENERGY LETTERS, 2020, 5 (02): : 486 - 519
  • [3] Aerogels for sustainable CO2 electroreduction to value-added chemicals
    Yan, Shenglin
    Mahyoub, Samah A.
    Cui, Yanran
    Wang, Qiong
    Li, Zhenglong
    MATERIALS TODAY SUSTAINABILITY, 2024, 28
  • [4] Photocatalytic conversion of CO2 into value-added and renewable fuels
    Yuan, Lan
    Xu, Yi-Jun
    APPLIED SURFACE SCIENCE, 2015, 342 : 154 - 167
  • [5] CO2 reduction routes to value-added oxygenates: a review
    Parth Bhatia
    Swapnil Dharaskar
    Ashish P. Unnarkat
    Environmental Science and Pollution Research, 2021, 28 : 61929 - 61950
  • [6] Direct and Oriented Conversion of CO2 into Value-Added Aromatics
    Wang, Yang
    Gao, Weizhe
    Kazumi, Shun
    Li, Hangjie
    Yang, Guohui
    Tsubaki, Noritatsu
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (20) : 5149 - 5153
  • [7] Catalytic conversion of CO2 into high value-added chemicals
    Guo, Xinwen
    Song, Chunshan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [8] CO2 reduction routes to value-added oxygenates: a review
    Bhatia, Parth
    Dharaskar, Swapnil
    Unnarkat, Ashish P.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (44) : 61929 - 61950
  • [9] An insight into the bioelectrochemical photoreduction of CO2 to value-added chemicals
    Gupta, Priyanka
    Noori, Mohammad Tabish
    Esteve Nunez, Abraham
    Verma, Nishith
    ISCIENCE, 2021, 24 (04)
  • [10] Heterogeneous catalytic CO2 conversion to value-added hydrocarbons
    Dorner, Robert W.
    Hardy, Dennis R.
    Williams, Frederick W.
    Willauer, Heather D.
    ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (07) : 884 - 890