Ultrahigh fuel utilization in polymer electrolyte fuel cells - Part II: A modeling study

被引:3
|
作者
Wang, Yun [1 ,2 ]
Yang, Xiaoguang [1 ,2 ]
Wang, Chao-Yang [1 ,2 ]
机构
[1] Penn State Univ, Electrochem Engine Ctr ECEC, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
Fuel cells; fuel utilization; hydrogen; low stoichiometry; modeling; water management; SIMULATION; TRANSPORT; FLOW; DEFORMATION; PERFORMANCE; VALIDATION; DYNAMICS;
D O I
10.1080/15435075.2021.1941042
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, ultrahigh fuel utilization (>98%) in polymer electrolyte fuel cells (PEFCs) is numerically studied to investigate three aspects for this operation strategy: its effect on fuel cell performance, occurance of fuel starvation, and altered water management. Simulation results reveal that the anode flow, when using pure hydrogen fuel, decelerates to nearly zero under the high fuel utlization. The anode gas flow remains high in the hydrogen concentration throughout the gas flow channel, eliminating concerns of fuel starvation and increased anode overpotential. The numerical study confirms the experimental observation that the high-fuel-utilization strategy has very little impact on cell power output in the stable operating regime. It is shown that fuel cell's water removal almost totally relies on the cathode channel flow under ultrahigh fuel utilization, which may be one cause for experimentally observed instability in fuel cell operation under low current density.
引用
收藏
页码:166 / 174
页数:9
相关论文
共 50 条
  • [11] Modeling mass and heat transfer in membrane humidifiers for polymer electrolyte membrane fuel cells
    Schoenfeld, Ladislaus
    Kreitmeir, Michael
    Wolfenstetter, Florian
    Neumann, Maximilian
    Klein, Harald
    Rehfeldt, Sebastian
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 223
  • [12] Modeling water phenomena in the cathode side of polymer electrolyte fuel cells
    Zhang, Yufan
    Agravante, Gerard
    Kadyk, Thomas
    Eikerling, Michael H.
    ELECTROCHIMICA ACTA, 2023, 452
  • [13] ASYMPTOTIC REDUCTION FOR NUMERICAL MODELING OF POLYMER ELECTROLYTE FUEL CELLS
    Vynnycky, M.
    Shugai, G.
    Yakubenko, P.
    Mellgren, N.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (02) : 455 - 487
  • [14] Modeling polymer electrolyte fuel cells: A high precision analysis
    Zhang, S.
    Reimer, U.
    Beale, S. B.
    Lehnert, W.
    Stolten, D.
    APPLIED ENERGY, 2019, 233 : 1094 - 1103
  • [15] On the modeling of water transport in polymer electrolyte membrane fuel cells
    Wu, Hao
    Li, Xianguo
    Berg, Peter
    ELECTROCHIMICA ACTA, 2009, 54 (27) : 6913 - 6927
  • [16] Dynamic modeling of chemical membrane degradation in polymer electrolyte fuel cells: Effect of pinhole formation
    Zheng, Weibo
    Xu, Liangfei
    Hu, Zunyan
    Ding, Yujie
    Li, Jianqiu
    Ouyang, Minggao
    JOURNAL OF POWER SOURCES, 2021, 487
  • [17] Modeling of ion and water transport in the polymer electrolyte membrane of PEM fuel cells
    Baschuk, J. J.
    Li, Xianguo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (10) : 5095 - 5103
  • [18] Capillaries for water management in polymer electrolyte membrane fuel cells
    Cho, J. I. S.
    Neville, T. P.
    Trogadas, P.
    Bailey, J.
    Shearing, P.
    Brett, D. J. L.
    Coppens, M. -O.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (48) : 21949 - 21958
  • [19] Optimizing hydrogen utilization in Fuel Cell Hybrid Vehicles: Modeling fuel cell systems and managing energy between batteries and fuel cells
    Lim, Hyun Sung
    Kang, Byeonghyun
    Ahn, Minhyeok
    Kim, Min Soo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 99 : 819 - 835
  • [20] Dynamic modeling and analysis of polymer electrolyte fuel cell
    Yerramalla, S
    Davari, A
    Feliachi, A
    2002 IEEE POWER ENGINEERING SOCIETY SUMMER MEETING, VOLS 1-3, CONFERENCE PROCEEDINGS, 2002, : 82 - 86