A Quasi-Fast Solver for Weakly Singular Integral Equations of the Second Kind

被引:1
作者
Rehman, Sumaira [1 ]
Pedas, Arvet [1 ]
Vainikko, Gennadi [1 ]
机构
[1] Univ Tartu, Inst Math & Stat, J Liivi 2, Tartu, Estonia
关键词
Fredholm integral equations; fast/quasi-fast solvers; periodization; trigonometric collocation; HIGH-ORDER METHODS; SMOOTHING TRANSFORMATION; COMPLEXITY; COLLOCATION;
D O I
10.1080/01630563.2019.1704781
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss bounds of quasi-fast or fast solving weakly singular Fredholm integral equation of the second kind. We modify the method presented in Rehman et al. (2018).
引用
收藏
页码:850 / 870
页数:21
相关论文
共 36 条
  • [1] [Anonymous], J ANAL
  • [2] [Anonymous], P ESTONIAN ACAD SCI
  • [3] Atkinson K, 2009, Theoretical Numerical Analysis: A Functional Analysis Framework, V3rd
  • [4] Compression techniques for boundary integral equations - asymptotically optimal complexity estimates
    Dahmen, W
    Harbrecht, H
    Schneider, R
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 43 (06) : 2251 - 2271
  • [5] Smoothing transformation and spline collocation for weakly singular Volterra integro-differential equations
    Diogo, T.
    Lima, P. M.
    Pedas, A.
    Vainikko, G.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2017, 114 : 63 - 76
  • [6] EMELYANOV KV, 1967, USSR COMP MATH MATH, V7, P259, DOI DOI 10.1016/0041-5553(67)90160-7
  • [7] Information complexity of multivariate Fredholm integral equations in Sobolev classes
    Frank, K
    Heinrich, S
    Pereverzev, S
    [J]. JOURNAL OF COMPLEXITY, 1996, 12 (01) : 17 - 34
  • [8] GRAHAM IG, 1982, J INTEGRAL EQUAT, V4, P1
  • [9] High-Order Methods for Volterra Integral Equations with General Weak Singularities
    Kolk, Marek
    Pedas, Arvet
    Vainikko, Gennadi
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (9-10) : 1002 - 1024
  • [10] High order methods for weakly singular integral equations with nonsmooth input functions
    Monegato, G
    Scuderi, L
    [J]. MATHEMATICS OF COMPUTATION, 1998, 67 (224) : 1493 - 1515