A Wheat R2R3-type MYB Transcription Factor TaODORANT1 Positively Regulates Drought and Salt Stress Responses in Transgenic Tobacco Plants

被引:97
|
作者
Wei, Qiuhui [1 ]
Luo, Qingchen [1 ]
Wang, Ruibin [1 ]
Zhang, Fan [1 ]
He, Yuan [1 ]
Zhang, Yang [1 ]
Qiu, Ding [1 ]
Li, Kexiu [1 ]
Chang, Junli [1 ]
Yang, Guangxiao [1 ]
He, Guangyuan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Genet Engn Int Cooperat Base, Chinese Minist Sci & Technol, Key Lab Mol Biophys,Chinese Minist Educ,Coll Life, Wuhan, Hubei, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2017年 / 8卷
基金
中国国家自然科学基金;
关键词
wheat; abiotic stress; MYB; antioxidation system; stress related genes; FACTOR GENE; ABIOTIC STRESS; ADAPTIVE RESPONSE; DRAFT GENOME; TOLERANCE; OVEREXPRESSION; EXPRESSION; COLD; RESISTANCE; ENCODES;
D O I
10.3389/fpls.2017.01374
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
MYB transcription factors play important roles in plant responses to biotic and abiotic stress. In this study, TaODORANT1, a R2R3-MYB gene, was cloned from wheat (Triticum aestivum L.). TaODORANT1 was localized in the nucleus and functioned as a transcriptional activator. TaODORANT1 was up-regulated in wheat under PEG6000, NaCl, ABA, and H2O2 treatments. TaODORANT1-overexpressing transgenic tobacco plants exhibited higher relative water content and lower water loss rate under drought stress, as well as lower Na+ accumulation in leaves under salt stress. The transgenic plants showed higher CAT activity but lower ion leakage, H2O2 and malondialdehyde contents under drought and salt stresses. Besides, the transgenic plants also exhibited higher SOD activity under drought stress. Our results also revealed that TaODORANT1 overexpression up-regulated the expression of several ROS-and stress-related genes in response to both drought and salt stresses, thus enhancing transgenic tobacco plants tolerance. Our studies demonstrate that TaODORANT1 positively regulates plant tolerance to drought and salt stresses.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] AtDIV2, an R-R-type MYB transcription factor of Arabidopsis, negatively regulates salt stress by modulating ABA signaling
    Fang, Qing
    Wang, Qiong
    Mao, Hui
    Xu, Jing
    Wang, Ying
    Hu, Hao
    He, Shuai
    Tu, Junchu
    Cheng, Chao
    Tian, Guozheng
    Wang, Xianqiang
    Liu, Xiaopeng
    Zhang, Chi
    Luo, Keming
    PLANT CELL REPORTS, 2018, 37 (11) : 1499 - 1511
  • [32] AtDIV2, an R-R-type MYB transcription factor of Arabidopsis, negatively regulates salt stress by modulating ABA signaling
    Qing Fang
    Qiong Wang
    Hui Mao
    Jing Xu
    Ying Wang
    Hao Hu
    Shuai He
    Junchu Tu
    Chao Cheng
    Guozheng Tian
    Xianqiang Wang
    Xiaopeng Liu
    Chi Zhang
    Keming Luo
    Plant Cell Reports, 2018, 37 : 1499 - 1511
  • [33] A wheat R2R3 MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat
    Li, Xiaorui
    Tang, Yan
    Li, Hailan
    Luo, Wen
    Zhou, Chunju
    Zhang, Lixin
    Lv, Jinyin
    PLANT SCIENCE, 2020, 299
  • [34] FvMYB24, a strawberry R2R3-MYB transcription factor, improved salt stress tolerance in transgenic Arabidopsis
    Wang, Shuaishuai
    Shi, Mengyun
    Zhang, Yang
    Xie, Xingbin
    Sun, Peipei
    Fang, Congbing
    Zhao, Jing
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 569 : 93 - 99
  • [35] The Paeonia qiui R2R3-MYB Transcription Factor PqMYB113 Positively Regulates Anthocyanin Accumulation in Arabidopsis thaliana and Tobacco
    Liu, Xiaokun
    Duan, Jingjing
    Huo, Dan
    Li, Qinqin
    Wang, Qiaoyun
    Zhang, Yanlong
    Niu, Lixin
    Luo, Jianrang
    FRONTIERS IN PLANT SCIENCE, 2022, 12
  • [36] A Novel R2R3-MYB Transcription Factor FtMYB22 Negatively Regulates Salt and Drought Stress through ABA-Dependent Pathway
    Zhao, Haixia
    Yao, Panfeng
    Zhao, Jiali
    Wu, Huala
    Wang, Shuang
    Chen, Ying
    Hu, Mufan
    Wang, Tao
    Li, Chenglei
    Wu, Qi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (23)
  • [37] Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis
    Dai, Xiaoyan
    Xu, Yunyuan
    Ma, Qibin
    Xu, Wenying
    Wang, Tai
    Xue, Yongbiao
    Chong, Kang
    PLANT PHYSIOLOGY, 2007, 143 (04) : 1739 - 1751
  • [38] An R2R3-MYB Transcription Factor Regulates Capsaicinoid Biosynthesis
    Arce-Rodriguez, Magda L.
    Ochoa-Alejoa, Neftali
    PLANT PHYSIOLOGY, 2017, 174 (03) : 1359 - 1370
  • [39] R2R3-MYB transcription factor PhMYB2 positively regulates anthocyanin biosynthesis in Pericallis hybrida
    Cui, Yumeng
    Fan, Jiawei
    Liu, Fangye
    Li, Hao
    Pu, Ya
    Huang, He
    Dai, Silan
    SCIENTIA HORTICULTURAE, 2023, 322
  • [40] The mungbean VrP locus encoding MYB90, an R2R3-type MYB protein, regulates anthocyanin biosynthesis
    Lin, Yun
    Laosatit, Kularb
    Liu, Jinyang
    Chen, Jingbing
    Yuan, Xingxing
    Somta, Prakit
    Chen, Xin
    FRONTIERS IN PLANT SCIENCE, 2022, 13