Mellin pseudodifferential operators with slowly varying symbols and singular integrals on Carleson curves with Muckenhoupt weights

被引:26
作者
Bottcher, A [1 ]
Karlovich, YI
Rabinovich, VS
机构
[1] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[2] Ukrainian Acad Sci, Inst Marine Hydrophys, Hydroacoust Dept, UA-270100 Odessa, Ukraine
[3] Rostov Don State Univ, Fac Mech & Math, Rostov On Don 344711, Russia
关键词
Mathematics Subject Classification (1991):Primary: 47 B 35;¶Secondary: 42 A 50, 45 E 05, 46 N 20, 47 G 30;
D O I
10.1007/s002290050035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that by using Mellin pseudodifferential operators whose double symbol depends analytically on the co-variable we can rather quickly arrive at descriptions of the local spectra of the Cauchy singular integral operator over a large class of Carleson curves with Muckenhoupt weights. The approach of this paper extends some recent results of the spectral theory of singular integral operators to the case of piecewise slowly varying coefficients and also yields new and surprising interpretations of these results.
引用
收藏
页码:363 / 376
页数:14
相关论文
共 18 条
  • [1] Beals R., 1979, ANN I FOURIER GRENOB, V29, P239, DOI 10.5802/aif.760
  • [2] BISHOP CJ, 1996, IN PRESS MATH NACHR
  • [3] Bottcher A, 1996, OPER THEOR, V90, P119
  • [4] Emergence, persistence, and disappearance of logarithmic spirals in the spectra of singular integral operators
    Bottcher, A
    Karlovich, YI
    Rabinovich, VS
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 25 (04) : 406 - 444
  • [5] Submultiplicative functions and spectral theory of Toeplitz operators
    Bottcher, A
    Karlovich, YI
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1996, 4 (1-2) : 181 - 202
  • [6] BOTTCHER A, 1995, IN PRESS T AM MATH S
  • [7] DAVID G, 1984, ANN SCI ECOLE NORM S, V17, P157
  • [8] Dynkin E.M., 1985, J. Soviet Math., V21, P2094, DOI DOI 10.1007/BF02105397
  • [9] GOHBERG I, 1992, ONE DIMENSIONAL LINE, V2
  • [10] GOHBERG I, 1992, ONE DIMENSIONAL LINE, V1