How to deal with parameters for whole-cell modelling

被引:60
作者
Babtie, Ann C. [1 ]
Stumpf, Michael P. H. [1 ]
机构
[1] Imperial Coll London, Dept Life Sci, London, England
基金
英国生物技术与生命科学研究理事会;
关键词
whole-cell models; statistical inference; parameter estimation; model selection; SYSTEMS BIOLOGY; NETWORK INFERENCE; GENE-EXPRESSION; IDENTIFIABILITY ANALYSIS; POSITIONAL INFORMATION; BAYESIAN-APPROACH; DYNAMICAL MODELS; GROWTH LAWS; SENSITIVITY; SELECTION;
D O I
10.1098/rsif.2017.0237
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dynamical systems describing whole cells are on the verge of becoming a reality. But as models of reality, they are only useful if we have realistic parameters for the molecular reaction rates and cell physiological processes. There is currently no suitable framework to reliably estimate hundreds, let alone thousands, of reaction rate parameters. Here, we map out the relative weaknesses and promises of different approaches aimed at redressing this issue. While suitable procedures for estimation or inference of the whole (vast) set of parameters will, in all likelihood, remain elusive, some hope can be drawn from the fact that much of the cellular behaviour may be explained in terms of smaller sets of parameters. Identifying such parameter sets and assessing their behaviour is now becoming possible even for very large systems of equations, and we expect such methods to become central tools in the development and analysis of whole-cell models.
引用
收藏
页数:11
相关论文
共 107 条
[51]   Inferring extrinsic noise from single-cell gene expression data using approximate Bayesian computation [J].
Lenive, Oleg ;
Kirk, Paul D. W. ;
Stumpf, Michael P. H. .
BMC SYSTEMS BIOLOGY, 2016, 10
[52]   Large-scale in silico modeling of metabolic interactions between cell types in the human brain [J].
Lewis, Nathan E. ;
Schramm, Gunnar ;
Bordbar, Aarash ;
Schellenberger, Jan ;
Andersen, Michael P. ;
Cheng, Jeffrey K. ;
Patel, Nilam ;
Yee, Alex ;
Lewis, Randall A. ;
Eils, Roland ;
Koenig, Rainer ;
Palsson, Bernhard O. .
NATURE BIOTECHNOLOGY, 2010, 28 (12) :1279-U91
[53]   Omic data from evolved E-coli are consistent with computed optimal growth from genome-scale models [J].
Lewis, Nathan E. ;
Hixson, Kim K. ;
Conrad, Tom M. ;
Lerman, Joshua A. ;
Charusanti, Pep ;
Polpitiya, Ashoka D. ;
Adkins, Joshua N. ;
Schramm, Gunnar ;
Purvine, Samuel O. ;
Lopez-Ferrer, Daniel ;
Weitz, Karl K. ;
Eils, Roland ;
Koenig, Rainer ;
Smith, Richard D. ;
Palsson, Bernhard O. .
MOLECULAR SYSTEMS BIOLOGY, 2010, 6
[54]   Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources [J].
Li, Gene-Wei ;
Burkhardt, David ;
Gross, Carol ;
Weissman, Jonathan S. .
CELL, 2014, 157 (03) :624-635
[55]   Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes [J].
Liepe, Juliane ;
Holzhuetter, Hermann-Georg ;
Bellavista, Elena ;
Kloetzel, Peter M. ;
Stumpf, Michael P. H. ;
Mishto, Michele .
ELIFE, 2015, 4
[56]   A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation [J].
Liepe, Juliane ;
Kirk, Paul ;
Filippi, Sarah ;
Toni, Tina ;
Barnes, Chris P. ;
Stumpf, Michael P. H. .
NATURE PROTOCOLS, 2014, 9 (02) :439-456
[57]   Maximizing the Information Content of Experiments in Systems Biology [J].
Liepe, Juliane ;
Filippi, Sarah ;
Komorowski, Michal ;
Stumpf, Michael P. H. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (01)
[58]   The future of whole-cell modeling [J].
Macklin, Derek N. ;
Ruggero, Nicholas A. ;
Covert, Markus W. .
CURRENT OPINION IN BIOTECHNOLOGY, 2014, 28 :111-115
[59]  
Marbach D, 2012, NAT METHODS, V9, P796, DOI [10.1038/NMETH.2016, 10.1038/nmeth.2016]
[60]   SIMPLE MATHEMATICAL-MODELS WITH VERY COMPLICATED DYNAMICS [J].
MAY, RM .
NATURE, 1976, 261 (5560) :459-467