Monotone Circuit Lower Bounds from Robust Sunflowers

被引:0
作者
Cavalar, Bruno Pasqualotto [1 ]
Kumar, Mrinal [2 ]
Rossman, Benjamin [3 ]
机构
[1] Univ Warwick, Coventry, W Midlands, England
[2] Indian Inst Technol, Mumbai, Maharashtra, India
[3] Duke Univ, Durham, England
基金
加拿大自然科学与工程研究理事会; 巴西圣保罗研究基金会;
关键词
Monotone circuit complexity; Robust sunflower lemma; Sunflowers; Circuit complexity; Computational complexity; Extremal combinatorics; Monotone arithmetic circuits; Arithmetic circuit complexity; DNF SPARSIFICATION; COMPLEXITY;
D O I
10.1007/s00453-022-01000-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Robust sunflowers are a generalization of combinatorial sunflowers that have applications in monotone circuit complexity Rossman (SIAM J. Comput. 43:256-279, 2014), DNF sparsification Gopalan et al. (Comput. Complex. 22:275-310 2013), randomness extractors Li et al. (In: APPROX-RANDOM, LIPIcs 116:51:1-13, 2018), and recent advances on the Erdos-Rado sunflower conjecture Alweiss et al. (In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC. Association for Computing Machinery, New York, NY, USA, 2020) Lovett et al. (From dnf compression to sunflower theorems via regularity, 2019) Rao (Discrete Anal. 8,2020). The recent breakthrough of Alweiss, Lovett, Wu and Zhang Alweiss et al. (In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC. Association for Computing Machinery, New York, NY, USA, 2020) gives an improved bound on the maximum size of a w-set system that excludes a robust sunflower. In this paper, we use this result to obtain an exp(n(1/2-o(1))) lower bound on the monotone circuit size of an explicit n-variate monotone function, improving the previous best known exp(n(1/3-o(1))) due to Andreev (Algebra and Logic, 26:1-18, 1987) and Harnik and Raz (In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, ACM, New York, 2000). We also show an exp(Omega(n)) lower bound on the monotone arithmetic circuit size of a related polynomial via a very simple proof. Finally, we introduce a notion of robust clique-sunflowers and use this to prove an n(Omega(k)) lower bound on the monotone circuit size of the CLIQUE function for all k <= n(1/3-o(1)), strengthening the bound of Alon and Boppana (Combinatorica, 7:1-22, 1987).
引用
收藏
页码:3655 / 3685
页数:31
相关论文
共 30 条
[1]   THE MONOTONE CIRCUIT COMPLEXITY OF BOOLEAN FUNCTIONS [J].
ALON, N ;
BOPPANA, RB .
COMBINATORICA, 1987, 7 (01) :1-22
[2]   A FAST AND SIMPLE RANDOMIZED PARALLEL ALGORITHM FOR THE MAXIMAL INDEPENDENT SET PROBLEM [J].
ALON, N ;
BABAI, L ;
ITAI, A .
JOURNAL OF ALGORITHMS, 1986, 7 (04) :567-583
[3]   Improved Bounds for the Sunflower Lemma [J].
Alweiss, Ryan ;
Lovett, Shachar ;
Wu, Kewen ;
Zhang, Jiapeng .
PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 2020, :624-630
[4]  
Andreev A. E., 1987, Algebra and Logic, V26, P1, DOI 10.1007/BF01978380
[5]  
ANDREEV AE, 1985, DOKL AKAD NAUK SSSR+, V282, P1033
[6]  
[Anonymous], 1990, Random Structures & Algorithms
[7]   Note on sunflowers [J].
Bell, Tolson ;
Chueluecha, Suchakree ;
Warnke, Lutz .
DISCRETE MATHEMATICS, 2021, 344 (07)
[8]   Explicit Binary Tree Codes with Polylogarithmic Size Alphabet [J].
Cohen, Gil ;
Haeupler, Bernhard ;
Schulman, Leonard J. .
STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, :535-544
[9]  
Erdos P., 1960, J. London Math. Soc., Second Series, V35, P85
[10]   A TOWER OF ARTIN-SCHREIER EXTENSIONS OF FUNCTION-FIELDS ATTAINING THE DRINFELD-VLADUT BOUND [J].
GARCIA, A ;
STICHTENOTH, H .
INVENTIONES MATHEMATICAE, 1995, 121 (01) :211-222