A new method of solving the coefficient inverse problem

被引:16
作者
Cui, Ming-gen [1 ]
Lin, Ying-zhen
Yang, Li-hong
机构
[1] Harbin Inst Technol, Dept Math, Weihai 264209, Peoples R China
[2] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2007年 / 50卷 / 04期
关键词
partial differential equation; coefficient inverse problem; reproducing kernel space;
D O I
10.1007/s11425-007-0013-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the new method for solving the coefficient inverse problem in the reproducing kernel space. It is different from the previous studies. This method gives accurate results and shows that it is valid by the numerical example.
引用
收藏
页码:561 / 572
页数:12
相关论文
共 10 条
[1]  
[Anonymous], THEORY APPL
[2]  
Aronszajn N., 1950, T AM MATH SOC, V168, P1
[3]   GENERALIZED PULSE-SPECTRUM TECHNIQUE [J].
CHEN, YM .
GEOPHYSICS, 1985, 50 (11) :1664-1675
[4]   The exact solutions of a kind of nonlinear operator equations [J].
Cui, MG ;
Yang, LH .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 167 (01) :607-615
[5]   A widely convergent generalized pulse-spectrum technique for the coefficient inverse problem of differential equations [J].
Han, B ;
Zhang, ML ;
Liu, JQ .
APPLIED MATHEMATICS AND COMPUTATION, 1997, 81 (2-3) :97-112
[6]   A new slant on the inverse problems of electromagnetic frequency sounding: 'convexification' of a multiextremal objective function via the Carleman weight functions [J].
Klibanov, MV ;
Timonov, A .
INVERSE PROBLEMS, 2001, 17 (06) :1865-1887
[7]  
KLIBANOV MV, 2003, NUMER METHODS PROGRA, V4, P52
[8]  
Tikhonov A., 1998, Nonlinear ill-posed problems
[9]  
WEN SL, 1997, J COMPUT MATH APPL, V3, P177
[10]  
Wu, 2004, NUMERICAL ANAL REPRO