Synthesis and characterization of transparent alumina reinforced polycarbonate nanocomposite

被引:57
作者
Hakimelahi, Hamid R. [1 ]
Hu, Ling [1 ]
Rupp, Bradley B. [1 ]
Coleman, Maria R. [1 ]
机构
[1] Univ Toledo, Dept Chem & Environm Engn, Toledo, OH 43606 USA
关键词
Polycarbonate nanocomposite; Alumina nanowhisker; In-situ polymerization; MECHANICAL-PROPERTIES; OPTICAL-PROPERTIES; CARBON NANOFIBERS; THERMAL-PROPERTIES; COMPOSITES; POLYCONDENSATION; BEHAVIOR; WHISKERS; OXIDE; POLYCARBONATE-CO-POLY(P-ETHYLPHENOL);
D O I
10.1016/j.polymer.2010.04.023
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Transparent nanocomposite films were fabricated by blending a concentrated nanocomposite formed by in-situ polymerization of polycarbonate in the presence of alumina nanowhisker with a high molecular weight polycarbonate. Polycarbonate was grafted to the alumina nanowhisker surface to improve nanofiller dispersion and load transfer to polymer matrix. Fourier transform infrared spectroscopy confirmed the functionalization of the nanowhisker with polycarbonate. Samples produced using functionalized alumina exhibited improved dispersion compared to the raw alumina nanowhiskers in the PC. Functionalization of alumina nanowhisker enhanced tensile properties (Young's modulus and tensile strength) relative to the pure polycarbonate and blends produced with raw alumina nanowhisker. Additionally, the nanocomposite formed using in-situ polymerization showed small decreases in transparency in the visual range compared to the base polymer with increased absorption in the UV range. The effect of reaction temperature during in-situ polymerization on the properties of the nanocomposite was investigated. Higher reaction temperature resulted in improved dispersion and sharp increases in tensile modulus and shear strength. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2494 / 2502
页数:9
相关论文
共 47 条
[1]   Thermal Conductivity of Polymer Nanocomposites Made With Carbon Nanofibers [J].
Agarwal, Sushant ;
Khan, M. Masud K. ;
Gupta, Rakesh K. .
POLYMER ENGINEERING AND SCIENCE, 2008, 48 (12) :2474-2481
[2]  
Bridgman PW, 1952, Studies in large plastic flow and fracture
[3]   Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties [J].
Chandra, Alexander ;
Turng, Lih-Sheng ;
Gopalan, Padma ;
Rowell, Roger M. ;
Gong, Shaoqin .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (3-4) :768-776
[4]   Mechanical and thermal properties of vapor-grown carbon nanofiber and polycarbonate composite sheets [J].
Choi, YK ;
Sugimoto, KI ;
Song, SM ;
Endo, M .
MATERIALS LETTERS, 2005, 59 (27) :3514-3520
[5]   Thermal properties and flame retardancy of polycarbonate/hydroxyapatite nanocomposite [J].
Dong, Quan-Xiao ;
Chen, Qian-Jin ;
Yang, Wei ;
Zheng, Yi-Lei ;
Liu, Xin ;
Li, Yuan-Li ;
Yang, Ming-Bo .
JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 109 (01) :659-663
[6]   Reinforcement mechanisms in MWCNT-filled polycarbonate [J].
Eitan, A. ;
Fisher, F. T. ;
Andrews, R. ;
Brinson, L. C. ;
Schadler, L. S. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (09) :1162-1173
[7]   Improving the mechanical properties of polycarbonate nanocomposites with plasma-modified carbon nanofibers [J].
Gao, Yong ;
He, Peng ;
Lian, Jie ;
Wang, Lumin ;
Qian, Dong ;
Zhao, Jian ;
Wang, Wei ;
Schulz, Mark J. ;
Zhang, Jing ;
Zhou, Xingping ;
Shi, Donglu .
JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2006, 45 (04) :671-679
[8]  
Glatkowski P.J., 2006, U.S. Patent, Patent No. [7,060,241, 7060241]
[9]   Synthesis of aluminum oxide/gradient copolymer composites by atom transfer radical polymerization [J].
Gu, B ;
Sen, A .
MACROMOLECULES, 2002, 35 (23) :8913-8916
[10]   Compounding, micro injection moulding and characterisation of polycarbonate-nanosized alumina-composites for application in microoptics [J].
Hanemann, Thomas ;
Hausselt, Juergen ;
Ritzhaupt-Kleissl, Eberhard .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2009, 15 (03) :421-427