Plastic anisotropy and dislocation trajectory in BCC metals

被引:125
|
作者
Dezerald, Lucile [1 ,2 ]
Rodney, David [3 ]
Clouet, Emmanuel [1 ]
Ventelon, Lisa [1 ]
Willaime, Francois [4 ]
机构
[1] Univ Paris Saclay, CEA, DEN Serv Rech Met Phys, F-91191 Gif Sur Yvette, France
[2] Univ Lorraine, CNRS, Inst Jean Lamour, F-54011 Nancy, France
[3] Univ Lyon 1, Inst Lumiere Matiere, CNRS, F-69622 Villeurbanne, France
[4] Univ Paris Saclay, CEA, DEN Dept Mat Nucl, F-91191 Gif Sur Yvette, France
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
关键词
CENTERED-CUBIC METALS; NON-GLIDE STRESSES; SCREW DISLOCATIONS; CORE STRUCTURE; SINGLE-CRYSTALS; DEFORMATION; SLIP; MOLYBDENUM; FE; 1ST-PRINCIPLES;
D O I
10.1038/ncomms11695
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plasticity in body-centred cubic (BCC) metals at low temperatures is atypical, marked in particular by an anisotropic elastic limit in clear violation of the famous Schmid law applicable to most other metals. This effect is known to originate from the behaviour of the screw dislocations; however, the underlying physics has so far remained insufficiently understood to predict plastic anisotropy without adjustable parameters. Here we show that deviations from the Schmid law can be quantified from the deviations of the screw dislocation trajectory away from a straight path between equilibrium configurations, a consequence of the asymmetrical and metal-dependent potential energy landscape of the dislocation. We propose a modified parameter-free Schmid law, based on a projection of the applied stress on the curved trajectory, which compares well with experimental variations and first-principles calculations of the dislocation Peierls stress as a function of crystal orientation.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Anisotropy in rolled metals induced by dislocation structure
    Li, ZJ
    Winther, G
    Hansen, N
    ACTA MATERIALIA, 2006, 54 (02) : 401 - 410
  • [42] HREM imaging of screw dislocation core structures in bcc metals
    Mendis, BG
    Mishin, Y
    Hartley, CS
    Hemker, KJ
    Electron Microscopy of Molecular and Atom-Scale Mechanical Behavior, Chemistry and Structure, 2005, 839 : 73 - 78
  • [43] THERMALLY ACTIVATED DISLOCATION MOTION IN FCC AND REFRACTORY BCC METALS
    CHAMBERS, RH
    APPLIED PHYSICS LETTERS, 1963, 2 (09) : 165 - 167
  • [44] DISLOCATION RELAXATION SPECTRA IN PLASTICALLY DEFORMED REFRACTORY BCC METALS
    CHAMBERS, RH
    SCHULTZ, J
    ACTA METALLURGICA, 1962, 10 (APR): : 466 - &
  • [45] BINDING OF HELIUM TO A [100] (010) EDGE DISLOCATION IN BCC METALS
    HOLBROOK, JH
    WILSON, WD
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (03): : 258 - 258
  • [46] Kinetic Monte Carlo modeling of dislocation motion in BCC metals
    Cai, W
    Bulatov, VV
    Yip, S
    Argon, AS
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 309 : 270 - 273
  • [47] Investigation of the dislocation slip assumption on formability of BCC sheet metals
    Serenelli, M. J.
    Bertinetti, M. A.
    Signorelli, J. W.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2010, 52 (12) : 1723 - 1734
  • [48] MECHANISM OF DISLOCATION INTERLACEMENT NUCLEATION ON HELICOIDS IN METALS WITH BCC LATTICE
    ORLOV, AN
    PEREVEZENTSEV, VN
    FIZIKA METALLOV I METALLOVEDENIE, 1974, 38 (06): : 1139 - 1145
  • [49] Electronic selection rules controlling dislocation glide in bcc metals
    Jones, Travis E.
    Eberhart, Mark E.
    Clougherty, Dennis P.
    Woodward, Chris
    PHYSICAL REVIEW LETTERS, 2008, 101 (08)
  • [50] DISLOCATION MORPHOLOGY IN SHOCK DEFORMED BCC AND FCC METALS AND ALLOYS
    KRESSEL, H
    BROWN, N
    ACTA METALLURGICA, 1966, 14 (12): : 1860 - &