A validation of the hydrodynamic characteristics of the coolant loop of a high-temperature gas-cooled reactor at low power in a power-generating facility using a turbo-machine conversion in a Brayton cycle is given. The validation is accomplished using diagnostics of models of a coolant loop, numerical modeling of the hydrodynamics, heat-and-mass transfer in models with more accurate three-dimensional CFD codes. Relations for ensuring tangential uniformity of the coolant velocity distribution near the core shell and at the entry into the distributing manifold are obtained. A distributing manifold geometry securing a uniform coolant flow distribution over core cooling tracts at low hydraulic resistance is proposed. Data are obtained on the velocity and temperature distributions in fuel pins spaced by a wire winding.