Damage mechanism identification in composites via machine learning and acoustic emission

被引:81
|
作者
Muir, C. [1 ]
Swaminathan, B. [1 ]
Almansour, A. S. [2 ]
Sevener, K. [3 ]
Smith, C. [2 ]
Presby, M. [2 ]
Kiser, J. D. [2 ]
Pollock, T. M. [1 ]
Daly, S. [4 ]
机构
[1] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA USA
[2] NASA, Glenn Res Ctr, Cleveland, OH USA
[3] Univ Michigan, Mat Sci & Engn Dept, Ann Arbor, MI 48109 USA
[4] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
PATTERN-RECOGNITION APPROACH; FIBER-REINFORCED COMPOSITE; CERAMIC-MATRIX COMPOSITES; HILBERT-HUANG TRANSFORM; SELF-ORGANIZING MAP; FAILURE MODES; WAVELET TRANSFORM; CLUSTER-ANALYSIS; TENSILE TESTS; K-MEANS;
D O I
10.1038/s41524-021-00565-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Damage mechanism identification has scientific and practical ramifications for the structural health monitoring, design, and application of composite systems. Recent advances in machine learning uncover pathways to identify the waveform-damage mechanism relationship in higher-dimensional spaces for a comprehensive understanding of damage evolution. This review evaluates the state of the field, beginning with a physics-based understanding of acoustic emission waveform feature extraction, followed by a detailed overview of waveform clustering, labeling, and error analysis strategies. Fundamental requirements for damage mechanism identification in any machine learning framework, including those currently in use, under development, and yet to be explored, are discussed.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Acoustic Emission as a Tool for Damage Identification and Characterization in Glass Reinforced Cross Ply Laminates
    D. G. Aggelis
    N.-M. Barkoula
    T. E. Matikas
    A. S. Paipetis
    Applied Composite Materials, 2013, 20 : 489 - 503
  • [32] Acoustic Emission as a Tool for Damage Identification and Characterization in Glass Reinforced Cross Ply Laminates
    Aggelis, D. G.
    Barkoula, N-M
    Matikas, T. E.
    Paipetis, A. S.
    APPLIED COMPOSITE MATERIALS, 2013, 20 (04) : 489 - 503
  • [33] Wavelet transform of acoustic emission signals in failure of model composites
    Ni, QQ
    Iwamoto, M
    ENGINEERING FRACTURE MECHANICS, 2002, 69 (06) : 717 - 728
  • [34] Study on interfacial debonding stress and damage mechanisms of C/SiC composites using acoustic emission
    Li, Yuanchen
    Liu, Xiao
    Chen, Guang
    Ren, Chengzu
    CERAMICS INTERNATIONAL, 2021, 47 (04) : 4512 - 4520
  • [35] Analysis of the damage mechanisms in mixedmode delamination of laminated composites using acoustic emission data clustering
    Fotouhi, Mohamad
    Sadeghi, Seyedali
    Jalalvand, Meisam
    Ahmadi, Mehdi
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2017, 30 (03) : 318 - 340
  • [36] Damage characterization of CFRP laminates using acoustic emission and digital image correlation: Clustering, damage identification and classification
    Andraju, Lala Bahadur
    Raju, Gangadharan
    ENGINEERING FRACTURE MECHANICS, 2023, 277
  • [37] Investigation on damage evolution of open-hole plain woven composites under tensile load by acoustic emission signal analysis
    Liu, Yuhang
    Zhang, Li
    Li, Zhixing
    Chen, Zhanguang
    Huang, Kai
    Guo, Licheng
    COMPOSITE STRUCTURES, 2023, 305
  • [38] Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique
    Wang, Wentao
    Li, Hui
    Qu, Zhi
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2012, 2012, 8348
  • [39] Matrix cracking onset stress and strain as a function of temperature, and characterisation of damage modes in SiCf/SiC ceramic matrix composites via acoustic emission
    Quiney, Z.
    Jeffs, S. P.
    Gale, L.
    Pattison, S.
    Bache, M. R.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (07) : 2958 - 2967
  • [40] Intelligent identification of machining damage in ceramic matrix composites based on deep learning
    Mao, Weiming
    Zhou, Kun
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2024, 187