Damage mechanism identification in composites via machine learning and acoustic emission

被引:81
|
作者
Muir, C. [1 ]
Swaminathan, B. [1 ]
Almansour, A. S. [2 ]
Sevener, K. [3 ]
Smith, C. [2 ]
Presby, M. [2 ]
Kiser, J. D. [2 ]
Pollock, T. M. [1 ]
Daly, S. [4 ]
机构
[1] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA USA
[2] NASA, Glenn Res Ctr, Cleveland, OH USA
[3] Univ Michigan, Mat Sci & Engn Dept, Ann Arbor, MI 48109 USA
[4] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
PATTERN-RECOGNITION APPROACH; FIBER-REINFORCED COMPOSITE; CERAMIC-MATRIX COMPOSITES; HILBERT-HUANG TRANSFORM; SELF-ORGANIZING MAP; FAILURE MODES; WAVELET TRANSFORM; CLUSTER-ANALYSIS; TENSILE TESTS; K-MEANS;
D O I
10.1038/s41524-021-00565-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Damage mechanism identification has scientific and practical ramifications for the structural health monitoring, design, and application of composite systems. Recent advances in machine learning uncover pathways to identify the waveform-damage mechanism relationship in higher-dimensional spaces for a comprehensive understanding of damage evolution. This review evaluates the state of the field, beginning with a physics-based understanding of acoustic emission waveform feature extraction, followed by a detailed overview of waveform clustering, labeling, and error analysis strategies. Fundamental requirements for damage mechanism identification in any machine learning framework, including those currently in use, under development, and yet to be explored, are discussed.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Damage Determination in Ceramic Composites Subject to Tensile Fatigue Using Acoustic Emission
    Morscher, Gregory N.
    Han, Zipeng
    MATERIALS, 2018, 11 (12)
  • [22] Wavelet Based Clustering of Acoustic Emission Hits to Characterize Damage Mechanisms in Composites
    Satour, A.
    Montresor, S.
    Bentahar, M.
    Boubenider, F.
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2020, 39 (02)
  • [23] Fracture of fiber-reinforced composites analyzed via acoustic emission
    Ereifej, Nadia S.
    Oweis, Yara G.
    Kaltarawneh, Sandra
    DENTAL MATERIALS JOURNAL, 2015, 34 (04) : 417 - 424
  • [24] Characterization of Biocomposites and Glass Fiber Epoxy Composites Based on Acoustic Emission Signals, Deep Feature Extraction, and Machine Learning
    Kek, Tomaz
    Potocnik, Primoz
    Misson, Martin
    Bergant, Zoran
    Sorgente, Mario
    Govekar, Edvard
    Sturm, Roman
    SENSORS, 2022, 22 (18)
  • [25] Wavelet Based Clustering of Acoustic Emission Hits to Characterize Damage Mechanisms in Composites
    A. Satour
    S. Montrésor
    M. Bentahar
    F. Boubenider
    Journal of Nondestructive Evaluation, 2020, 39
  • [26] Machine-Learning-Based Methods for Acoustic Emission Testing: A Review
    Ciaburro, Giuseppe
    Iannace, Gino
    APPLIED SCIENCES-BASEL, 2022, 12 (20):
  • [27] Three-point bending damage detection of SiC coated C/C composites based on acoustic emission
    Wu, Quanliang
    Shi, Xiaohong
    Jiao, Fan
    Li, Wei
    Ti, Xutong
    Liu, Honglin
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [28] A Global Method for the Identification of Failure Modes in Fiberglass Using Acoustic Emission
    Arumugam, V.
    Kumar, C. Suresh
    Santulli, C.
    Sarasini, E.
    Stanley, A. Joseph
    JOURNAL OF TESTING AND EVALUATION, 2011, 39 (05) : 954 - 966
  • [29] Damage characterization of carbon/epoxy composites using acoustic emission signals wavelet analysis
    Khamedi, Ramin
    Abdi, Saeed
    Ghorbani, Amir
    Ghiami, Amir
    Erden, Seckin
    COMPOSITE INTERFACES, 2020, 27 (01) : 111 - 124
  • [30] Monitoring Damage Progression in Tensile Tested SiCp/Al Composites Using Acoustic Emission
    Wu, Weiguo
    Wei, Wei
    Wang, Yanju
    Sha, Aixue
    Hao, Wenfeng
    FRONTIERS IN MATERIALS, 2022, 9