Damage mechanism identification in composites via machine learning and acoustic emission

被引:79
|
作者
Muir, C. [1 ]
Swaminathan, B. [1 ]
Almansour, A. S. [2 ]
Sevener, K. [3 ]
Smith, C. [2 ]
Presby, M. [2 ]
Kiser, J. D. [2 ]
Pollock, T. M. [1 ]
Daly, S. [4 ]
机构
[1] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA USA
[2] NASA, Glenn Res Ctr, Cleveland, OH USA
[3] Univ Michigan, Mat Sci & Engn Dept, Ann Arbor, MI 48109 USA
[4] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
PATTERN-RECOGNITION APPROACH; FIBER-REINFORCED COMPOSITE; CERAMIC-MATRIX COMPOSITES; HILBERT-HUANG TRANSFORM; SELF-ORGANIZING MAP; FAILURE MODES; WAVELET TRANSFORM; CLUSTER-ANALYSIS; TENSILE TESTS; K-MEANS;
D O I
10.1038/s41524-021-00565-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Damage mechanism identification has scientific and practical ramifications for the structural health monitoring, design, and application of composite systems. Recent advances in machine learning uncover pathways to identify the waveform-damage mechanism relationship in higher-dimensional spaces for a comprehensive understanding of damage evolution. This review evaluates the state of the field, beginning with a physics-based understanding of acoustic emission waveform feature extraction, followed by a detailed overview of waveform clustering, labeling, and error analysis strategies. Fundamental requirements for damage mechanism identification in any machine learning framework, including those currently in use, under development, and yet to be explored, are discussed.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Damage mechanism identification in composites via machine learning and acoustic emission
    C. Muir
    B. Swaminathan
    A. S. Almansour
    K. Sevener
    C. Smith
    M. Presby
    J. D. Kiser
    T. M. Pollock
    S. Daly
    npj Computational Materials, 7
  • [2] Quantitative Benchmarking of Acoustic Emission Machine Learning Frameworks for Damage Mechanism Identification
    Muir, C.
    Tulshibagwale, N.
    Furst, A.
    Swaminathan, B.
    Almansour, A. S.
    Sevener, K.
    Presby, M.
    Kiser, J. D.
    Pollock, T. M.
    Daly, S.
    Smith, C.
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2023, 12 (01) : 70 - 81
  • [3] Quantitative Benchmarking of Acoustic Emission Machine Learning Frameworks for Damage Mechanism Identification
    C. Muir
    N. Tulshibagwale
    A. Furst
    B. Swaminathan
    A. S. Almansour
    K. Sevener
    M. Presby
    J. D. Kiser
    T. M. Pollock
    S. Daly
    C. Smith
    Integrating Materials and Manufacturing Innovation, 2023, 12 : 70 - 81
  • [4] Damage mode identification in carbon/epoxy composite via machine learning and acoustic emission
    Qiao, Shuai
    Huang, Man
    Liang, Yu-jiao
    Zhang, Shuan-zhu
    Zhou, Wei
    POLYMER COMPOSITES, 2023, 44 (04) : 2427 - 2440
  • [5] Identifying damage mechanisms of composites by acoustic emission and supervised machine learning
    Almeida, Renato S. M.
    Magalhaes, Marcelo D.
    Karim, Md Nurul
    Tushtev, Kamen
    Rezwan, Kurosch
    MATERIALS & DESIGN, 2023, 227
  • [6] A machine learning framework for damage mechanism identification from acoustic emissions in unidirectional SiC/SiC composites
    Muir, C.
    Swaminathan, B.
    Fields, K.
    Almansour, A. S.
    Sevener, K.
    Smith, C.
    Presby, M.
    Kiser, J. D.
    Pollock, T. M.
    Daly, S.
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [7] A machine learning framework for damage mechanism identification from acoustic emissions in unidirectional SiC/SiC composites
    C. Muir
    B. Swaminathan
    K. Fields
    A. S. Almansour
    K. Sevener
    C. Smith
    M. Presby
    J. D. Kiser
    T. M. Pollock
    S. Daly
    npj Computational Materials, 7
  • [8] Mechanical behaviour and identification of damage by acoustic emission of smart composites
    Masmoudi, S.
    El Mahi, A.
    El Guerjouma, R.
    Turki, S.
    MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2014, 10 (01) : 2 - 17
  • [9] Blind deconvolution of acoustic emission signals for damage identification in composites
    Zheng, GT
    Buckley, MA
    Kister, G
    Fernando, GF
    AIAA JOURNAL, 2001, 39 (06) : 1198 - 1205
  • [10] Blind deconvolution of acoustic emission signals for damage identification in composites
    Zheng, GT
    Buckley, MA
    Kister, G
    Fernando, GF
    NONDESTRUCTIVE EVALUATION OF AGING MATERIALS AND COMPOSITES IV, 2000, 3993 : 47 - 57