Damage mechanism identification in composites via machine learning and acoustic emission

被引:81
|
作者
Muir, C. [1 ]
Swaminathan, B. [1 ]
Almansour, A. S. [2 ]
Sevener, K. [3 ]
Smith, C. [2 ]
Presby, M. [2 ]
Kiser, J. D. [2 ]
Pollock, T. M. [1 ]
Daly, S. [4 ]
机构
[1] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA USA
[2] NASA, Glenn Res Ctr, Cleveland, OH USA
[3] Univ Michigan, Mat Sci & Engn Dept, Ann Arbor, MI 48109 USA
[4] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
PATTERN-RECOGNITION APPROACH; FIBER-REINFORCED COMPOSITE; CERAMIC-MATRIX COMPOSITES; HILBERT-HUANG TRANSFORM; SELF-ORGANIZING MAP; FAILURE MODES; WAVELET TRANSFORM; CLUSTER-ANALYSIS; TENSILE TESTS; K-MEANS;
D O I
10.1038/s41524-021-00565-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Damage mechanism identification has scientific and practical ramifications for the structural health monitoring, design, and application of composite systems. Recent advances in machine learning uncover pathways to identify the waveform-damage mechanism relationship in higher-dimensional spaces for a comprehensive understanding of damage evolution. This review evaluates the state of the field, beginning with a physics-based understanding of acoustic emission waveform feature extraction, followed by a detailed overview of waveform clustering, labeling, and error analysis strategies. Fundamental requirements for damage mechanism identification in any machine learning framework, including those currently in use, under development, and yet to be explored, are discussed.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Damage mode identification in carbon/epoxy composite via machine learning and acoustic emission
    Qiao, Shuai
    Huang, Man
    Liang, Yu-jiao
    Zhang, Shuan-zhu
    Zhou, Wei
    POLYMER COMPOSITES, 2023, 44 (04) : 2427 - 2440
  • [2] Identifying damage mechanisms of composites by acoustic emission and supervised machine learning
    Almeida, Renato S. M.
    Magalhaes, Marcelo D.
    Karim, Md Nurul
    Tushtev, Kamen
    Rezwan, Kurosch
    MATERIALS & DESIGN, 2023, 227
  • [3] A machine learning framework for damage mechanism identification from acoustic emissions in unidirectional SiC/SiC composites
    Muir, C.
    Swaminathan, B.
    Fields, K.
    Almansour, A. S.
    Sevener, K.
    Smith, C.
    Presby, M.
    Kiser, J. D.
    Pollock, T. M.
    Daly, S.
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [4] Achieving robust damage mode identification of adhesive composite joints for wind turbine blade using acoustic emission and machine learning
    Xu, D.
    Liu, P. F.
    Chen, Z. P.
    Leng, J. X.
    Jiao, L.
    COMPOSITE STRUCTURES, 2020, 236
  • [5] Challenges and Limitations in the Identification of Acoustic Emission Signature of Damage Mechanisms in Composites Materials
    Godin, Nathalie
    Reynaud, Pascal
    Fantozzi, Gilbert
    APPLIED SCIENCES-BASEL, 2018, 8 (08):
  • [6] Damage mode identification of adhesive composite joints under hygrothermal environment using acoustic emission and machine learning
    Xu, D.
    Liu, P. F.
    Li, J. G.
    Chen, Z. P.
    COMPOSITE STRUCTURES, 2019, 211 : 351 - 363
  • [7] Multiscale acoustic emission of C/SiC mini-composites and damage identification using pattern recognition
    Xie, Chuyang
    Gao, Xiguang
    Zhang, Huajun
    Song, Yingdong
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2020, 27 (01) : 148 - 162
  • [8] Tiny Machine Learning for Damage Classification in Concrete Using Acoustic Emission Signals
    Adin, Veysi
    Zhang, Yuxuan
    Oelmann, Bengt
    Bader, Sebastian
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [9] Damage Recognition of Acoustic Emission and Micro-CT Characterization of Bi-adhesive Repaired Composites Based on the Machine Learning Method
    Ji, Xiao-long
    Liang, Yu-jiao
    Zheng, Jia-yan
    Ma, Lian-hua
    Zhou, Wei
    APPLIED COMPOSITE MATERIALS, 2024, 31 (03) : 841 - 864
  • [10] Review on acoustic emission source location, damage recognition and lifetime prediction of fiber-reinforced composites
    Zhou, Wei
    Pan, Zhi-bo
    Wang, Jie
    Qiao, Shuai
    Ma, Lian-hua
    Liu, Jia
    Ren, Xia-ying
    Liang, Ya-zhao
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (02) : 583 - 607