Widths of some classes of convex functions and bodies

被引:1
作者
Konovalov, V. N. [1 ]
Maiorov, V. E. [2 ]
机构
[1] Ukrainian Acad Sci, Inst Math, UA-252601 Kiev, Ukraine
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
convex function; entropy; pseudo-dimension; VAPNIK-CHERVONENKIS DIMENSION; APPROXIMATION; NUMBERS; SETS;
D O I
10.1070/IM2010v074n01ABEH002482
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider classes of uniformly bounded convex functions defined on convex compact bodies in R(d) and satisfying a Lipschitz condition and establish the exact orders of their Kolmogorov, entropy, and pseudo-dimension widths in the L(1)-metric. We also introduce the notions of pseudo-dimension and pseudo-dimension widths for classes of sets and determine the exact orders of the entropy and pseudo-dimension widths of some classes of convex bodies in Rd relative to the pseudo-metric defined as the d-dimensional Lebesgue volume of the symmetric difference of two sets. We also find the exact orders of the entropy and pseudo-dimension widths of the corresponding classes of characteristic functions in L(p)-spaces, 1 <= p <= infinity.
引用
收藏
页码:127 / 150
页数:24
相关论文
共 16 条
[1]  
[Anonymous], E J APPROX
[2]  
BRONSHTEYN EM, 1975, SIBERIAN MATH J+, V16, P852
[3]   ENTROPY NUMBERS, S-NUMBERS, AND EIGENVALUE PROBLEMS [J].
CARL, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 41 (03) :290-306
[4]  
GORDON Y, 1994, STUD MATH, V111, P81
[5]   DECISION THEORETIC GENERALIZATIONS OF THE PAC MODEL FOR NEURAL NET AND OTHER LEARNING APPLICATIONS [J].
HAUSSLER, D .
INFORMATION AND COMPUTATION, 1992, 100 (01) :78-150
[6]   SPHERE PACKING NUMBERS FOR SUBSETS OF THE BOOLEAN N-CUBE WITH BOUNDED VAPNIK-CHERVONENKIS DIMENSION [J].
HAUSSLER, D .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 69 (02) :217-232
[7]   On the orders of nonlinear approximations for classes of functions of given form [J].
Konovalov, VN .
MATHEMATICAL NOTES, 2005, 78 (1-2) :88-104
[8]   Kolmogorov and linear widths of weighted Sobolev-type classes on a finite interval, II [J].
Konovalov, VN ;
Leviatan, D .
JOURNAL OF APPROXIMATION THEORY, 2001, 113 (02) :266-297
[9]  
LORENTZ CG, 1996, GRUNDLEHREN MATH WIS, V304
[10]  
Lu Xu-Guang, 1990, Mathematica Numerica Sinica, V12, P186