A fast multipole method for periodic systems with arbitrary unit cell geometries

被引:94
作者
Kudin, KN
Scuseria, GE
机构
[1] Rice Univ, Rice Quantum Inst, Ctr Nanoscale Sci & Technol, Houston, TX 77005 USA
[2] Rice Univ, Dept Chem, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0009-2614(97)01329-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The point-charge fast multipole method (FMM) for periodic boundary conditions is generalized from cubic to rectangular simulation cells. This development let us treat lattices with orthogonal (rectangular) unit cells. The lattice of non-orthogonal systems can be transformed to yield a rectangular simulation cell. Thus, our periodic FMM algorithm can be applied to lattices with arbitrary unit cells. We also discuss in detail our proposed solutions for problems arising from the accuracy of the infinite summation contribution and the dipole moment of the simulation cell. Benchmark results of our periodic FMM show linear-scaling properties. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 16 条
[1]  
CHALLACOMBE M, IN PRESS J CHEM PHYS
[2]   THE H = 0 TERM IN COULOMB SUMS BY THE EWALD TRANSFORMATION [J].
DEEM, MW ;
NEWSAM, JM ;
SINHA, SK .
JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (21) :8356-8359
[3]   Fast Fourier transform accelerated fast multipole algorithm [J].
Elliott, WD ;
Board, JA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (02) :398-415
[4]   Large scale simulation of macromolecules in solution: Combining the periodic fast multipole method with multiple time step integrators [J].
Figueirido, F ;
Levy, RM ;
Zhou, RH ;
Berne, BJ .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (23) :9835-9849
[5]   A FAST ALGORITHM FOR PARTICLE SIMULATIONS [J].
GREENGARD, L ;
ROKHLIN, V .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 73 (02) :325-348
[6]  
Greengard L., 1988, The rapid evaluation of potential fields in particle systems
[7]  
Kittel C., 2018, Introduction to solid state physics, V8th
[8]   A multipole-based algorithm for efficient calculation of forces and potentials in macroscopic periodic assemblies of particles [J].
Lambert, CG ;
Darden, TA ;
Board, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (02) :274-285
[9]   Comments on P(3)M, FMM, and the Ewald method for large periodic coulombic systems [J].
Pollock, EL ;
Glosli, J .
COMPUTER PHYSICS COMMUNICATIONS, 1996, 95 (2-3) :93-110
[10]   IMPLEMENTING THE FAST MULTIPOLE METHOD IN 3 DIMENSIONS [J].
SCHMIDT, KE ;
LEE, MA .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (5-6) :1223-1235