Proof of a conjecture on a congruence modulo 243 for overpartitions

被引:3
作者
Huang, Xiaoqian [1 ]
Yao, Olivia X. M. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
Overpartitions; Congruences; Theta functions; THETA-FUNCTIONS; ANALOGS;
D O I
10.1007/s10998-019-00283-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (p) over bar (n) denote the number of overpartitions of n. Recently, numerous congruences modulo powers of 2, 3 and 5 were established regarding (p) over bar (n). In particular, Xia discovered several infinite families of congruences modulo 9 and 27 for (p) over bar (n). Moreover, Xia conjectured that for n = 0, (p) over bar (96n + 76) = 0 (mod 243). In this paper, we confirm this conjecture by using theta function identities and the (p, k)-parametrization of theta functions.
引用
收藏
页码:227 / 235
页数:9
相关论文
共 13 条
[1]   On the two-dimensional theta functions of the Borweins [J].
Alaca, Ayse ;
Alaca, Saban ;
Williams, Kenneth S. .
ACTA ARITHMETICA, 2006, 124 (02) :177-195
[2]  
Alaca S, 2010, FUNCT APPROX COMMENT, V43, P45
[3]   Analogues of Ramanujan's partition identities and congruences arising from his theta functions and modular equations [J].
Baruah, Nayandeep Deka ;
Ojah, Kanan Kumari .
RAMANUJAN JOURNAL, 2012, 28 (03) :385-407
[4]  
Berndt B., 1985, Ramanujans Notebooks, Part V
[5]   Overpartitions [J].
Corteel, S ;
Lovejoy, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) :1623-1635
[6]   CUBIC ANALOGS OF THE JACOBIAN THETA-FUNCTION THETA(Z,Q) [J].
HIRSCHHORN, M ;
GARVAN, F ;
BORWEIN, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (04) :673-694
[7]  
Hirschhorn M. D., 2005, Journal of Combinatorial Mathematics and Combinatorial Computing, V53, P65
[8]   FOURIER SERIES OF A CLASS OF ETA QUOTIENTS [J].
Williams, Kenneth S. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (04) :993-1004
[9]   Proofs of some conjectures of Sun on the relations between sums of squares and sums of triangular numbers [J].
Xia, Ernest X. W. ;
Yan, Zhang .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (01) :189-212
[10]   Congruences modulo 9 and 27 for overpartitions [J].
Xia, Ernest X. W. .
RAMANUJAN JOURNAL, 2017, 42 (02) :301-323