Dynamic contrast-enhanced ultrasound parametric imaging for the detection of prostate cancer

被引:53
作者
Postema, Arnoud W. [1 ]
Frinking, Peter J. A. [2 ]
Smeenge, Martijn [1 ]
De Reijke, Theo M. [1 ]
De la Rosette, Jean J. M. C. H. [1 ]
Tranquart, Francois [2 ]
Wijkstra, Hessel [1 ]
机构
[1] Univ Amsterdam, Acad Med Ctr, Dept Urol, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
[2] Bracco Suisse SA, Geneva, Switzerland
关键词
prostate cancer imaging; contrast-enhanced ultrasound; parametric imaging; quantification; EAU GUIDELINES;
D O I
10.1111/bju.13116
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Objective To investigate the value of dynamic contrast-enhanced (DCE)-ultrasonography (US) and software-generated parametric maps in predicting biopsy outcome and their potential to reduce the amount of negative biopsy cores. Materials and Methods For 651 prostate biopsy locations (82 consecutive patients) we correlated the interpretation of DCE-US recordings with and without parametric maps with biopsy results. The parametric maps were generated by software which extracts perfusion parameters that differentiate benign from malignant tissue from DCE-US recordings. We performed a stringent analysis (all tumours) and a clinical analysis (clinically significant tumours). We calculated the potential reduction in biopsies (benign on imaging) and the resultant missed positive biopsies (false-negatives). Additionally, we evaluated the performance in terms of sensitivity, specificity negative predictive value (NPV) and positive predictive value (PPV) on a per-prostate level. Results Based on DCE-US, 470/651 (72.2%) of biopsy locations appeared benign, resulting in 40 false-negatives (8.5%), considering clinically significant tumours only. Including parametric maps, 411/651 (63.1%) of the biopsy locations appeared benign, resulting in 23 false-negatives (5.6%). In the per-prostate clinical analysis, DCE-US classified 38/82 prostates as benign, missing eight diagnoses. Including parametric maps, 31/82 prostates appeared benign, missing three diagnoses. Sensitivity, specificity, PPV and NPV were 73, 58, 50 and 79%, respectively, for DCE-US alone and 91, 56, 57 and 90%, respectively, with parametric maps. Conclusion The interpretation of DCE-US with parametric maps allows good prediction of biopsy outcome. A two-thirds reduction in biopsy cores seems feasible with only a modest decrease in cancer diagnosis.
引用
收藏
页码:598 / 603
页数:6
相关论文
共 18 条
[1]   Optimization of Initial Prostate Biopsy in Clinical Practice: Sampling, Labeling and Specimen Processing [J].
Bjurlin, Marc A. ;
Carter, H. Ballentine ;
Schellhammer, Paul ;
Cookson, Michael S. ;
Gomella, Leonard G. ;
Troyer, Dean ;
Wheeler, Thomas M. ;
Schlossberg, Steven ;
Penson, David F. ;
Taneja, Samir S. .
JOURNAL OF UROLOGY, 2013, 189 (06) :2039-2046
[2]   Mayo Clinic validation of the D'Amico risk group classification for predicting survival following radical prostatectomy [J].
Boorjian, Stephen A. ;
Karnes, R. Jeffrey ;
Rangel, Laureano J. ;
Bergstralh, Eric J. ;
Blute, Michael L. .
JOURNAL OF UROLOGY, 2008, 179 (04) :1354-1360
[3]   Toward complete and accurate reporting of studies of diagnostic accuracy: The STARD initiative [J].
Bossuyt, PM ;
Reitsma, JB ;
Bruns, DE ;
Gatsonis, CA ;
Glasziou, PP ;
Irwig, LM ;
Lijmer, JG ;
Moher, D ;
Rennie, D ;
de Vet, HCW .
ACADEMIC RADIOLOGY, 2003, 10 (06) :664-669
[4]  
Correas J-M, 2013, Diagn Interv Imaging, V94, P551, DOI 10.1016/j.diii.2013.01.017
[5]   The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma [J].
Epstein, JI ;
Allsbrook, WC ;
Amin, MB ;
Egevad, LL ;
Bastacky, S ;
Beltrán, AL ;
Berner, A ;
Billis, A ;
Boccon-Gibod, L ;
Cheng, L ;
Civantos, F ;
Cohen, C ;
Cohen, MB ;
Datta, M ;
Davis, C ;
Delahunt, B ;
Delprado, W ;
Eble, JN ;
Foster, CS ;
Furusato, M ;
Gaudin, PB ;
Grignon, DJ ;
Humphrey, PA ;
Iczkowski, KA ;
Jones, EC ;
Lucia, S ;
McCue, PA ;
Nazeer, T ;
Oliva, E ;
Pan, CC ;
Pizov, G ;
Reuter, V ;
Samaratunga, H ;
Sebo, T ;
Sesterhenn, I ;
Shevchuk, M ;
Srigley, JR ;
Suzigan, S ;
Takahashi, H ;
Tamboli, P ;
Tan, PH ;
Têtu, B ;
Tickoo, S ;
Tomaszewski, JE ;
Troncoso, P ;
Tsuzuki, T ;
True, LD ;
van der Kwast, T ;
Wheeler, TM ;
Wojno, KJ .
AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2005, 29 (09) :1228-1242
[6]  
Frinking P., 2010, 15 EUR S ULTR CONTR
[7]   Computerized transrectal ultrasound of the prostate in a multicenter setup (C-TRUS-MS): detection of cancer after multiple negative systematic random and in primary biopsies [J].
Grabski, Bjoern ;
Baeurle, Leif ;
Loch, Annemie ;
Wefer, Bjoern ;
Paul, Udo ;
Loch, Tillmann .
WORLD JOURNAL OF UROLOGY, 2011, 29 (05) :573-579
[8]   EAU Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent-Update 2013 [J].
Heidenreich, Axel ;
Bastian, Patrick J. ;
Bellmunt, Joaquim ;
Bolla, Michel ;
Joniau, Steven ;
van der Kwast, Theodor ;
Mason, Malcolm ;
Matveev, Vsevolod ;
Wiegel, Thomas ;
Zattoni, F. ;
Mottet, Nicolas .
EUROPEAN UROLOGY, 2014, 65 (01) :124-137
[9]   Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology [J].
Isebaert, Sofie ;
Van den Bergh, Laura ;
Haustermans, Karin ;
Joniau, Steven ;
Lerut, Evelyne ;
De Wever, Liesbeth ;
De Keyzer, Frederik ;
Budiharto, Tom ;
Slagmolen, Pieter ;
Van Poppel, Hendrik ;
Oyen, Raymond .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 37 (06) :1392-1401
[10]   CONTRAST-ULTRASOUND DISPERSION IMAGING FOR PROSTATE CANCER LOCALIZATION BY IMPROVED SPATIOTEMPORAL SIMILARITY ANALYSIS [J].
Kuenen, M. P. J. ;
Saidov, T. A. ;
Wijkstra, H. ;
Mischi, M. .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2013, 39 (09) :1631-1641