Inference for Weibull Competing Risks Data Under Generalized Progressive Hybrid Censoring

被引:30
作者
Wang, Liang [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayes analysis; competing risks; generalized progressive; hybrid censoring; Gibbs sampling; maximum-likelihood estimation; Weibull distribution; EXACT LIKELIHOOD INFERENCE; EXPONENTIAL-DISTRIBUTION; MODEL; FAILURE; PARAMETERS; SCHEMES;
D O I
10.1109/TR.2018.2828436
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Acompeting risksmodel is considered under a generalized progressive hybrid censoring. When the latent failure times areWeibull distributed, maximum-likelihood estimates for the unknown model parameters are establishedwhere the associated existence and uniqueness are shown. An asymptotic distribution of the maximum-likelihood estimators is used to construct approximate confidence intervals via the observed fisher information matrix. Moreover, Bayes point estimates and the highest probability density credible intervals of unknown parameters are also presented, and the Gibbs sampling technique is used to approximate corresponding estimates. Simulation studies and real-life example are presented for illustration purpose.
引用
收藏
页码:998 / 1007
页数:10
相关论文
共 27 条
[1]   Bayesian estimation based on progressive Type-II censoring from two-parameter bathtub-shaped lifetime model: an Markov chain Monte Carlo approach [J].
Ahmed, Essam A. .
JOURNAL OF APPLIED STATISTICS, 2014, 41 (04) :752-768
[2]  
[Anonymous], 2003, STAT MODEL METHODS L
[3]  
Balakrishnan N, 2014, STAT IND TECHNOL, P1, DOI 10.1007/978-0-8176-4807-7
[4]   Hybrid censoring: Models, inferential results and applications [J].
Balakrishnan, N. ;
Kundu, Debasis .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 57 (01) :166-209
[5]   On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data [J].
Balakrishnan, N. ;
Kateri, M. .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (17) :2971-2975
[6]  
Balakrishnan Narayanaswamy, 2000, Progressive censoring: theory, methods, and applications
[7]   Analysis of hybrid censored competing risks data [J].
Bhattacharya, Shrijita ;
Pradhan, Biswabrata ;
Kundu, Debasis .
STATISTICS, 2014, 48 (05) :1138-1154
[8]   ANALYSIS OF THE PROBABILITY AND RISK OF CAUSE-SPECIFIC FAILURE [J].
CAPLAN, RJ ;
PAJAK, TF ;
COX, JD .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1994, 29 (05) :1183-1186
[9]   Nonparametric estimation of cause-specific cross hazard ratio with bivariate competing risks data [J].
Cheng, Yu ;
Fine, Jason P. .
BIOMETRIKA, 2008, 95 (01) :233-240
[10]   Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution [J].
Childs, A ;
Chandrasekar, B ;
Balakrishnan, N ;
Kundu, D .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2003, 55 (02) :319-330