Standing waves for supercritical nonlinear Schrodinger equations

被引:33
作者
Davila, Juan
del Pino, Manuel
Musso, Monica
Wei, Juncheng [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[3] Univ Chile, CMM, Santiago, Chile
[4] Pontificia Univ Catolica Chile, Dept Matemat, Macul, Chile
[5] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
D O I
10.1016/j.jde.2007.01.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V (x) be a non-negative, bounded potential in R-N, N >= 3 and p supercritical, p > N+2/N-2. We look for positive solutions of the standing-wave nonlinear Schrodinger equation Delta u - V(x)u + u(P) = 0 in R-N, with u(x) -> 0 as vertical bar x vertical bar -> +infinity. We prove that if V(x) = 0(vertical bar x vertical bar(-2)) as vertical bar x vertical bar -> +infinity, then for N >= 4 and p > N+1/N-3 this problem admits a continuum of solutions. If in addition we have, for instance, V (x) = 0 (vertical bar x vertical bar-mu) with mu > N, then this result still holds provided that N >= 3 and p > N+2/N-2. Other conditions for solvability, involving behavior of V at infinity, are also provided. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:164 / 198
页数:35
相关论文
共 28 条
[1]   Bound states of nonlinear Schrodinger equations with potentials vanishing at infinity [J].
Ambrosetti, A. ;
Malchiodi, A. ;
Ruiz, D. .
JOURNAL D ANALYSE MATHEMATIQUE, 2006, 98 (1) :317-348
[2]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[3]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part I [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (03) :427-466
[4]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[5]   Concentration around a sphere for a singularly perturbed Schrodinger equation [J].
Badiale, M ;
D'Aprile, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (07) :947-985
[6]   EXISTENCE OF POSITIVE SOLUTIONS OF THE EQUATION -DELTA-U+A(X)U=U(N+2)/(N-2) IN RN [J].
BENCI, V ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) :90-117
[7]  
Benci V, 2006, PROG NONLINEAR DIFFE, V66, P53
[8]   Existence and non existence of the ground state solution for the nonlinear Schroedinger equations with V(∞)=0 [J].
Benci, V ;
Grisanti, CR ;
Micheletti, AM .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2005, 26 (02) :203-219
[9]   The semiclassical limit of the nonlinear Schrodinger equation in a radial potential [J].
Benci, V ;
D'Aprile, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (01) :109-138
[10]   Standing waves with a critical frequency for nonlinear Schrodinger equations [J].
Byeon, J ;
Wang, ZQ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 165 (04) :295-316