Modeling the 3D structure of GPCRs: Advances and application to drug discovery

被引:0
作者
Becker, OM [1 ]
Shacham, S [1 ]
Marantz, Y [1 ]
Noiman, S [1 ]
机构
[1] Predix Pharmaceut Ltd, IL-52521 Ramat Gan, Israel
关键词
3D models; docking; drug discovery; G protein-coupled; receptors; in silico screening;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
G protein-coupled receptors (GPCRs) are membrane-embedded proteins responsible for signal transduction; these receptors are, therefore, among the most important pharmaceutical drug targets. In the absence of X-ray structures, there have been numerous attempts to model the three-dimensional (3D) structure of GPCRS. In this review, the current status of GPCR modeling is evaluated, highlighting recent progress made in rhodopsin-based homology modeling and de novo modeling technology. Assessment of recent rhodopsin-based homology modeling studies indicates that, despite significant progress, these models do not yield hit rates that are sufficiently high for in silico screening (10 to 40% when screening for known binders). In contrast, the PREDICT modeling algorithm, which is independent of the rhodopsin structure, has now been fully validated in the context of drug discovery. PREDICT models are successfully used for drug discovery, yielding excellent hit rates (85 to 100% when screening for known binders), leading to the discovery of nanomolar-range new chemical entities for a variety of GPCR targets. Thus, 3D models of GPCRs should now allow the use of productive structure-based approaches for drug discovery.
引用
收藏
页码:353 / 361
页数:9
相关论文
共 50 条
[1]   STRUCTURE AND FUNCTION OF RECEPTORS COUPLED TO G-PROTEINS [J].
BALDWIN, JM .
CURRENT OPINION IN CELL BIOLOGY, 1994, 6 (02) :180-190
[2]   Structural mimicry in G protein-coupled receptors: Implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors [J].
Ballesteros, JA ;
Shi, L ;
Javitch, JA .
MOLECULAR PHARMACOLOGY, 2001, 60 (01) :1-19
[3]  
BECKER OM, 2002, Patent No. 00215106
[4]   Structural characterization and binding sites of G-protein-coupled receptors [J].
BeckSickinger, AG .
DRUG DISCOVERY TODAY, 1996, 1 (12) :502-513
[5]   Protein-based virtual screening of chemical databases. II. Are homology models of G-protein coupled receptors suitable targets? [J].
Bissantz, C ;
Bernard, P ;
Hibert, M ;
Rognan, D .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 50 (01) :5-25
[6]   Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations [J].
Bissantz, C ;
Folkers, G ;
Rognan, D .
JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (25) :4759-4767
[7]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[8]  
CASCIERI MA, 1995, MOL PHARMACOL, V47, P660
[9]   Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains [J].
Dann, CE ;
Hsieh, JC ;
Rattner, A ;
Sharma, D ;
Nathans, J ;
Leahy, DJ .
NATURE, 2001, 412 (6842) :86-90
[10]   A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5 [J].
Dragic, T ;
Trkola, A ;
Thompson, DAD ;
Cormier, EG ;
Kajumo, FA ;
Maxwell, E ;
Lin, SW ;
Ying, WW ;
Smith, SO ;
Sakmar, TP ;
Moore, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5639-5644