Shape Preserving Incremental Learning for Power Systems Fault Detection

被引:13
作者
Cordova, Jose [1 ]
Soto, Carlos [2 ]
Gilanifar, Mostafa [3 ]
Zhou, Yuxun [4 ]
Srivastava, Anuj [2 ]
Arghandeh, Reza [5 ]
机构
[1] Florida State Univ, ECE Dept, Tallahassee, FL 32310 USA
[2] Florida State Univ, Dept Stat, Tallahassee, FL 32310 USA
[3] Florida State Univ, IME Dept, Tallahassee, FL 32310 USA
[4] Univ Calif Berkeley, Dept EECS, Berkeley, CA 94702 USA
[5] Western Norway Univ Appl Sci, Dept Comp Math & Phys, N-5020 Bergen, Norway
来源
IEEE CONTROL SYSTEMS LETTERS | 2019年 / 3卷 / 01期
基金
欧盟地平线“2020”;
关键词
Shape-based data analysis; incremental learning; event detection; fault detection; power distribution networks; LOCATION;
D O I
10.1109/LCSYS.2018.2852064
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter presents a shape preserving incremental learning algorithm that employs a novel shape-based metric called the Fisher-Rao amplitude-phase distance (FRAPD) metric. The combined amplitude and phase distance metric is achieved on a function space from the Fisher-Rao elastic registration. We utilize an exhaustive search method for selecting the optimal parameter that captures the amplitude and phase distance contribution in FRAPD when performing a clustering process. The proposed incremental learning structure based on the shape preserving FRAPD distance metric utilizes continuously updated fault shape templates with the Karchermean. The seamless updating of abnormal events enhances the clustering performance for power systems fault detection. The algorithm is validated using the actual data from real-time hardware-in-the-loop testbed.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 18 条
[1]  
[Anonymous], 2017, PAPELES DISCUSION IE
[2]   Power Distribution Network Topology Detection With Time-Series Signature Verification Method [J].
Cavraro, Guido ;
Arghandeh, Reza .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (04) :3500-3509
[3]  
Derek Tucker J., 2016, fdasrvf: Elastic Functional Data Analysis
[4]  
Dimitriadou E., 2017, E1071 TU WIEN
[5]   Review of methodologies for earth fault indication and location in compensated and unearthed MV distribution networks [J].
Farughian, Amir ;
Kumpulainen, Lauri ;
Kauhaniemi, Kimmo .
ELECTRIC POWER SYSTEMS RESEARCH, 2018, 154 :373-380
[6]  
Fritsch S., 2016, neuralnet: Training of neural networks (R package)
[7]   Fault location and detection techniques in power distribution systems with distributed generation: A review [J].
Gururajapathy, S. S. ;
Mokhlis, H. ;
Illias, H. A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 74 :949-958
[8]   Comparison of Impedance Based and Travelling Waves Based Fault Location Methods for Power Distribution Systems Tested in a Real 205-Nodes Distribution feeder [J].
Hosseinikia M. ;
Talavat V. .
Transactions on Electrical and Electronic Materials, 2018, 19 (02) :123-133
[9]  
Kersting W, 2001, 2001 IEEE POWER ENGINEERING SOCIETY WINTER MEETING, CONFERENCE PROCEEDINGS, VOLS 1-3, P908, DOI 10.1109/PESW.2001.916993
[10]  
Srivastava A, 2016, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4939-4020-2