Effect of Mg on microstructure and mechanical properties of Al-Mg alloys produced by high pressure torsion

被引:125
作者
Liu, Yang [1 ]
Liu, Manping [2 ]
Chen, Xuefei [3 ,4 ]
Cao, Yang [3 ]
Roven, Hans J. [5 ]
Murashkin, Maxim [6 ,7 ]
Valiev, Ruslan Z. [6 ,7 ]
Zhou, Hao [3 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60201 USA
[2] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nano & Heterogeneous Mat Ctr, Nanjing 210094, Jiangsu, Peoples R China
[4] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[5] Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway
[6] Ufa State Aviat Tech Univ, Inst Phys Adv Mat, Ufa 450008, Russia
[7] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Al-Mg alloys; High pressure torsion; Nanocrystalline materials; Transmission electron microscopy; STACKING-FAULT ENERGY; DISLOCATION CONFIGURATIONS; GRAIN-REFINEMENT; HIGH-STRENGTH; ALUMINUM; DEFORMATION; SEGREGATION; ZN; GROWTH; PRECIPITATION;
D O I
10.1016/j.scriptamat.2018.09.033
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Al-Mg alloys are a series of low cost and low density AI alloys, which show remarkable strengthening during deformation. In this work, study of commercial purity Al, Al-0.5Mg and Al-4.1Mg alloys was carried out to investigate the effect of Mg on materials strengthening. Slight solid solution strengthening by Mg addition is found in the as-cast alloys. While further significant strengthening effect is achieved in the alloys produced by high pressure torsion. An extraordinarily high strength of similar to 800 MPa is achieved in the Al-4.1Mg alloy, as a result of deformation induced ultrafine grains, high density stacking faults and Mg segregation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:137 / 141
页数:5
相关论文
共 49 条
[41]   Nanoparticle-inhibited growth of primary aluminum in Al-10Si alloys [J].
Wang, K. ;
Jiang, H. Y. ;
Jia, Y. W. ;
Zhou, H. ;
Wang, Q. D. ;
Ye, B. ;
Ding, W. J. .
ACTA MATERIALIA, 2016, 103 :252-263
[42]   Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum [J].
Wang, Lihua ;
Teng, Jiao ;
Liu, Pan ;
Hirata, Akihiko ;
Ma, En ;
Zhang, Ze ;
Chen, Mingwei ;
Han, Xiaodong .
NATURE COMMUNICATIONS, 2014, 5
[43]   In Situ Observation of Dislocation Behavior in Nanometer Grains [J].
Wang, Lihua ;
Han, Xiaodong ;
Liu, Pan ;
Yue, Yonghai ;
Zhang, Ze ;
Ma, En .
PHYSICAL REVIEW LETTERS, 2010, 105 (13)
[44]   Influence of stacking fault energy on deformation mechanism and dislocation storage capacity in ultrafine-grained materials [J].
Wang, Z. W. ;
Wang, Y. B. ;
Liao, X. Z. ;
Zhao, Y. H. ;
Lavernia, E. J. ;
Zhu, Y. T. ;
Horita, Z. ;
Langdon, T. G. .
SCRIPTA MATERIALIA, 2009, 60 (01) :52-55
[45]   Dislocations, boundaries and slip systems in cube grains of rolled aluminium [J].
Wei, Y. L. ;
Godfrey, A. ;
Liu, W. ;
Liu, Q. ;
Huang, X. ;
Hansen, N. ;
Winther, G. .
SCRIPTA MATERIALIA, 2011, 65 (04) :355-358
[46]   Dual-phase nanostructuring as a route to high-strength magnesium alloys [J].
Wu, Ge ;
Chan, Ka-Cheung ;
Zhu, Linli ;
Sun, Ligang ;
Lu, Jian .
NATURE, 2017, 545 (7652) :80-+
[47]   Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries [J].
Wu, X. L. ;
Zhu, Y. T. .
APPLIED PHYSICS LETTERS, 2006, 89 (03)
[48]   Effect of Ag on interfacial segregation in Mg-Gd-Y-(Ag)-Zr alloy [J].
Zhou, H. ;
Cheng, G. M. ;
Ma, X. L. ;
Xu, W. Z. ;
Mathaudhu, S. N. ;
Wang, Q. D. ;
Zhu, Y. T. .
ACTA MATERIALIA, 2015, 95 :20-29
[49]   Deformation twinning in nanocrystalline materials [J].
Zhu, Y. T. ;
Liao, X. Z. ;
Wu, X. L. .
PROGRESS IN MATERIALS SCIENCE, 2012, 57 (01) :1-62