Prediction of amorphous forming ability based on artificial neural network and convolutional neural network

被引:29
|
作者
Lu, Fei [1 ]
Liang, Yongchao [1 ]
Wang, Xingying [2 ]
Gao, Tinghong [1 ]
Chen, Qian [1 ]
Liu, Yunchun [1 ]
Zhou, Yu [1 ]
Yuan, Yongkai [1 ]
Liu, Yutao [1 ]
机构
[1] Guizhou Univ, Sch Big Data & Informat Engn, Guiyang 550025, Peoples R China
[2] Taiyuan Univ Technol, Coll Mech & Vehicle Engn, Taiyuan 030000, Peoples R China
基金
中国国家自然科学基金;
关键词
Amorphous forming ability; Amorphous alloy; Artificial neural network; Convolutional neural network; GLASS; CRITERION; TEMPERATURE;
D O I
10.1016/j.commatsci.2022.111464
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using a trial and error method to measure amorphous forming ability in the experiment is a complex and timeconsuming process. Therefore, it is necessary to devise a method that can rapidly and accurately predict the amorphous forming ability. In this study, two models, artificial neural network and convolutional neural network, are proposed for the prediction of amorphous forming ability of various amorphous alloys. The prediction accuracy of the two models reached 0.77623 and 0.71693, respectively, both of which were more than 19% higher than the reported prediction accuracy of the 13 criteria. This result shows that artificial neural network and convolutional neural network models can accurately predict the amorphous forming ability of a variety of amorphous alloys and provide theoretical guidance for the development and preparation of amorphous alloys.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A Learning Convolutional Neural Network Approach for Network Robustness Prediction
    Lou, Yang
    Wu, Ruizi
    Li, Junli
    Wang, Lin
    Li, Xiang
    Chen, Guanrong
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (07) : 4531 - 4544
  • [32] SteganoCNN: Image Steganography with Generalization Ability Based on Convolutional Neural Network
    Duan, Xintao
    Liu, Nao
    Gou, Mengxiao
    Wang, Wenxin
    Qin, Chuan
    ENTROPY, 2020, 22 (10) : 1 - 15
  • [33] Stock Prediction Using Convolutional Neural Network
    Chen, Sheng
    He, Hongxiang
    2018 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE APPLICATIONS AND TECHNOLOGIES (AIAAT 2018), 2018, 435
  • [34] Bioactivity Prediction Using Convolutional Neural Network
    Hamza, Hentabli
    Nasser, Maged
    Salim, Naomie
    Saeed, Faisal
    EMERGING TRENDS IN INTELLIGENT COMPUTING AND INFORMATICS: DATA SCIENCE, INTELLIGENT INFORMATION SYSTEMS AND SMART COMPUTING, 2020, 1073 : 341 - 351
  • [35] A neural decoding strategy based on convolutional neural network
    Hua, Shaoyang
    Wang, Congqing
    Wu, Xuewei
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (01) : 1033 - 1044
  • [36] Artificial neural network-based prediction of complete forming limit curves for steel in sheet metal forming
    Sharan, Shivesh Kumar
    Paul, Surajit Kumar
    Kumari, Jyoti
    Mondal, Arijit
    Journal of Alloys and Metallurgical Systems, 2025, 9
  • [37] Artificial Neural Network Based Path Loss Prediction for Wireless Communication Network
    Wu, Lina
    He, Danping
    Ai, Bo
    Wang, Jian
    Qi, Hang
    Guan, Ke
    Zhong, Zhangdui
    IEEE ACCESS, 2020, 8 : 199523 - 199538
  • [38] Artificial neurosynaptic device based on amorphous oxides for artificial neural network constructing
    Chen, Qiujiang
    Yang, Ruqi
    Hu, Dunan
    Ye, Zhizhen
    Lu, Jianguo
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (25) : 9165 - 9174
  • [39] Prediction of critical cooling rate for glass forming alloys by artificial neural network
    Cai, A. H.
    Liu, Y.
    An, W. K.
    Zhou, G. J.
    Luo, Y.
    Li, T. L.
    Li, X. S.
    Tan, X. F.
    MATERIALS & DESIGN, 2013, 52 : 671 - 676
  • [40] Prediction of forming pressure curve for hydroforming processes using artificial neural network
    Hyun, B.S.
    Cho, H.S.
    Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering, 1994, 208 (02) : 109 - 121