On Rotational Surfaces in 3-Dimensional de Sitter Space with Weingarten Condition

被引:1
作者
Demirci, Burcu Bektas [1 ]
机构
[1] Fatih Sultan Vakif Univ, Fac Engn, Dept Software Engn, Halic Campus, TR-34445 Istanbul, Turkey
关键词
Rotational surface; de Sitter space; Weingarten surface; mean curvature; Gaussian curvature; minimal surface; maximal surface; HYPERSURFACES;
D O I
10.1007/s00009-022-02042-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study spacelike and timelike rotational surfaces in a 3-dimensional de Sitter space S-2(3) which are the orbit of a regular curve under the action of the orthogonal transformation of a 4-dimensional Minkowski space E-1(4) leaving a Riemannian plane, a Lorentzian plane or a degenerate plane pointwise fixed. First, we determine the profile curve of the rotational surfaces in S-1(3) whose the principal curvatures say kappa and lambda satisfy a certain relation kappa = f (lambda) for a continuous function f, which is called a Weingarten surface. Also, the profile curve of such surfaces are parametrized with respect to the principal curvature, not arc-length parameter. Then, we find the parametrization of the profile curve of spacelike and timelike Weingarten rotational surfaces in S-1(3) by choosing the certain relation as kappa = a lambda + b or kappa = a lambda(m) where a, b and m are constants. Under these circumstances, we classify the spacelike and timelike rotational surfaces in S-1(3) with constant mean curvature, namely minimal or maximal surfaces, or constant Gaussian curvature parametrized in terms of principal curvature.
引用
收藏
页数:17
相关论文
共 23 条
  • [1] ROTATIONAL LINEAR WEINGARTEN SURFACES INTO THE EUCLIDEAN SPHERE
    Barros, A.
    Silva, J.
    Sousa, P.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2012, 192 (02) : 819 - 830
  • [2] Ruled Weingarten surfaces in Minkowski 3-space
    Dillen, F
    Kühnel, W
    [J]. MANUSCRIPTA MATHEMATICA, 1999, 98 (03) : 307 - 320
  • [3] Dillen F., 2008, B TRANSILV U BRASOV, V1, P109
  • [4] ROTATION HYPERSURFACES IN SPACES OF CONSTANT CURVATURE
    DOCARMO, M
    DAJCZER, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (02) : 685 - 709
  • [5] Rotational Weingarten surfaces in hyperbolic 3-space
    Dursun, Ugur
    [J]. JOURNAL OF GEOMETRY, 2020, 111 (01)
  • [6] Hartman P., 1954, AM J MATH, V76, P502
  • [7] Khnel W, 2003, DIFFERENTIAL GEOMETR
  • [8] RULED W-SURFACES
    KUHNEL, W
    [J]. ARCHIV DER MATHEMATIK, 1994, 62 (05) : 475 - 480
  • [9] On closed weingarten surfaces
    Kühnel, W
    Steller, M
    [J]. MONATSHEFTE FUR MATHEMATIK, 2005, 146 (02): : 113 - 126
  • [10] LINEAR WEINGARTEN HYPERSURFACES IN A UNIT SPHERE
    Li, Haizhong
    Suh, Young Jin
    Wei, Guoxin
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (02) : 321 - 329