Finite Time Stabilization of Nonlinear Cascade Systems under Input and Output Disturbances

被引:0
作者
Furtat, I. [1 ,2 ]
Orlov, Y. [2 ,3 ]
Fradkov, A. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, 61 Bolshoy Ave VO, St Petersburg 199178, Russia
[2] ITMO Univ, 49 Kronverkskiy Ave, St Petersburg 197101, Russia
[3] CICESE Res Ctr, Km 107,Carretera Tijuana Ensenada, Ensenada 22860, Baja California, Mexico
来源
2019 18TH EUROPEAN CONTROL CONFERENCE (ECC) | 2019年
基金
俄罗斯科学基金会;
关键词
SLIDING-MODE CONTROL; STABILITY; OBSERVER; DESIGN;
D O I
10.23919/ecc.2019.8795972
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Novel robust finite time stabilizing algorithms are proposed in [1] for a nonlinear first and second order systems under sufficiently large or linear growing input disturbance. In the present paper the proposed algorithms are generalized under simultaneous presence of large input and output disturbances. This problem is not trivial and complicated, because simultaneous compensation of input and output disturbances leads to the failure of objective or the loss of closed-loop system stability. Thus, in the paper we synthesis algorithms and define the class of disturbances such that the closed-loop system preserves the stability and goal is fulfilled. The control scheme is based on the disturbance compensation, relying on the dirty differentiation, and sliding mode approaches. The sufficient conditions of the closed-loop system stability under admissible disturbances are given. Simulation results illustrate efficiency of the proposed schemes and support theoretical results.
引用
收藏
页码:4088 / 4093
页数:6
相关论文
共 29 条
[1]   Adaptive second-order sliding mode control with uncertainty compensation [J].
Bartolini, G. ;
Levant, A. ;
Pisano, A. ;
Usai, E. .
INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (09) :1747-1758
[2]   A survey of applications of second-order sliding mode control to mechanical systems [J].
Bartolini, G ;
Pisano, A ;
Punta, E ;
Usai, E .
INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (9-10) :875-892
[3]   High order sliding mode observer for linear systems with unbounded unknown inputs [J].
Bejarano, Francisco J. ;
Fridman, Leonid .
INTERNATIONAL JOURNAL OF CONTROL, 2010, 83 (09) :1920-1929
[4]   Continuous finite-time stabilization of the translational and rotational double integrators [J].
Bhat, SP ;
Bernstein, DS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (05) :678-682
[5]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[6]   Second-order sliding-mode observer for mechanical systems [J].
Davila, J ;
Fridman, L ;
Levant, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1785-1789
[7]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[8]   Global sliding-mode observer with adjusted gains for locally Lipschitz systems [J].
Efimov, D. ;
Fridman, L. .
AUTOMATICA, 2011, 47 (03) :565-570
[9]  
EMELJANOV SV, 1986, SOV J COMPUT SYST S+, V24, P63
[10]  
Evangelista C.A., 2016, IEEE T CONT IN PRESS, P1