COLORING SOME FINITE SETS IN Rn

被引:20
作者
Balogh, Jozsef [1 ]
Kostochka, Alexandr [1 ,2 ]
Raigorodskii, Andrei [3 ,4 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Sobolev Inst Math, Novosibirsk, Russia
[3] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119991, Russia
[4] Moscow Inst Phys & Technol, Dept Discrete Math, Dolgoprudnyi, Russia
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
chromatic number; independence number; distance graph; REALIZATION; DISTANCES;
D O I
10.7151/dmgt.1641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note relates to bounds on the chromatic number chi(R-n) of the Euclidean space, which is the minimum number of colors needed to color all the points in R-n so that any two points at the distance 1 receive different colors. In [6] a sequence of graphs G(n) in R-n was introduced showing that chi(R-n) >= chi(G(n)) >= (1+ 0(1)) n(2)/6. For many years, this bound has been remaining the best known bound for the chromatic numbers of some lowdimensional spaces. Here we prove that chi(G(n)) similar to n(2)/6 and find an exact formula for the chromatic number in the case of n = 2(k) and n = 2(k) - 1.
引用
收藏
页码:25 / 31
页数:7
相关论文
共 9 条
[1]   On the chromatic number of ℝ9 [J].
Kupavskii A.B. ;
Raigorodskii A.M. .
Journal of Mathematical Sciences, 2009, 163 (6) :720-731
[2]  
[Anonymous], 1951, Nederl. Akad. Wetensch. Proc. Ser. A
[3]   INTERSECTION-THEOREMS WITH GEOMETRIC CONSEQUENCES [J].
FRANKL, P ;
WILSON, RM .
COMBINATORICA, 1981, 1 (04) :357-368
[4]   On the colouring of spheres embedded in Rn [J].
Kupavskii, A. B. .
SBORNIK MATHEMATICS, 2011, 202 (5-6) :859-886
[5]   REALIZATION OF DISTANCES WITHIN SETS IN EUCLIDEAN SPACE [J].
LARMAN, DG ;
ROGERS, CA .
MATHEMATIKA, 1972, 19 (37) :1-&
[6]   NOTE ON REALIZATION OF DISTANCES WITHIN SETS IN EUCLIDEAN SPACE [J].
LARMAN, DG .
COMMENTARII MATHEMATICI HELVETICI, 1978, 53 (04) :529-535
[7]   ASYMPTOTIC-BEHAVIOR OF THE CHROMATIC INDEX FOR HYPERGRAPHS [J].
PIPPENGER, N ;
SPENCER, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 51 (01) :24-42
[8]   On the chromatic number of a space [J].
Raigorodskii, AM .
RUSSIAN MATHEMATICAL SURVEYS, 2000, 55 (02) :351-352
[9]   The problems of Borsuk and Grunbaum on lattice polytopes [J].
Raigorodskii, AM .
IZVESTIYA MATHEMATICS, 2005, 69 (03) :513-537