Generalized shift operators and pseudo-polynomials of fractional order

被引:14
作者
Dattoli, G
Ricci, PE
Sacchetti, D
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] CR Frascati, Unita Tecn Sci Tecnol Fis Apllicate, I-00044 Frascati, Italy
[3] Univ Roma La Sapienza, Dipartimento Stat Probabil & Stat Applicata, I-00185 Rome, Italy
关键词
Hermite-Kampe de Feriet (or Gould-Hopper) polynomials; Bessel functions; exponential operators; fractional differential operators;
D O I
10.1016/S0096-3003(02)00334-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce families of pseudo-Kampe de Feriet polynomials, which can be viewed as the natural complement for the theory of fractional derivatives and partial fractional differential equations of evolutive type. We show that they allow the possibility of treating a large variety of exponential operators, providing generalized fractional forms of shift operators. The link of these pseudo-polynomials with Wright-type functions is also discussed. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 10 条
[1]  
Appell P., 1926, Fonctions hypergeometriques et hyperspheriques. Polynomes d' Hermite
[2]  
Dattoli G, 2000, NUOVO CIMENTO B, V115, P653
[3]   AN ALGEBRAIC VIEW TO THE OPERATORIAL ORDERING AND ITS APPLICATIONS TO OPTICS [J].
DATTOLI, G ;
GALLARDO, JC ;
TORRE, A .
RIVISTA DEL NUOVO CIMENTO, 1988, 11 (11) :1-79
[4]  
Dattoli G, 1997, RIV NUOVO CIMENTO, V20, P1
[5]  
Dattoli G., 2000, Advanced Special Functions and Applications, Proceedings of the First Melfi School on Advanced Topics in Mathematics and Physics, Melfi, Italy, 9-12 May 1999, P147
[6]  
Miller K.S.B. Ross., 1993, INTRO FRACTIONAL CAL, V1st, P384
[7]  
RICCI PE, 2001, TECNICHE OPERATORIAL
[8]  
Srivastava H.M., 1984, a Treatise on Generating Functions
[9]   EXPONENTIAL OPERATORS AND PARAMETER DIFFERENTIATION IN QUANTUM PHYSICS [J].
WILCOX, RM .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (04) :962-&
[10]  
Wright E.M., 1940, Quart. J. Math. Oxf. Ser, V11, P36, DOI [10.1093/qmath/os-11.1.36, DOI 10.1093/QMATH/OS-11.1.36]