3D skeleton-based human action classification: A survey

被引:282
|
作者
Lo Presti, Liliana [1 ]
La Cascia, Marco [1 ]
机构
[1] Univ Palermo, Vle Sci,Ed 6, I-90128 Palermo, Italy
关键词
Action recognition; Skeleton; Body joint; Body pose representation; Action classification; HUMAN ACTIVITY RECOGNITION; HUMAN ACTION CATEGORIES; PARTIAL LEAST-SQUARES; HUMAN MOTION ANALYSIS; PICTORIAL STRUCTURES; GESTURE RECOGNITION; ACTION SEGMENTATION; POSE ESTIMATION; REPRESENTATION; FEATURES;
D O I
10.1016/j.patcog.2015.11.019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, there has been a proliferation of works on human action classification from depth sequences. These works generally present methods and/or feature representations for the classification of actions from sequences of 3D locations of human body joints and/or other sources of data, such as depth maps and RGB videos. This survey highlights motivations and challenges of this very recent research area by presenting technologies and approaches for 3D skeleton-based action classification. The work focuses on aspects such as data pre-processing, publicly available benchmarks and commonly used accuracy measurements. Furthermore, this survey introduces a categorization of the most recent works in 3D skeleton-based action classification according to the adopted feature representation. This paper aims at being a starting point for practitioners who wish to approach the study of 3D action classification and gather insights on the main challenges to solve in this emerging field. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:130 / 147
页数:18
相关论文
共 50 条
  • [1] A Survey on 3D Skeleton-Based Action Recognition Using Learning Method
    Ren, Bin
    Liu, Mengyuan
    Ding, Runwei
    Liu, Hong
    CYBORG AND BIONIC SYSTEMS, 2024, 5
  • [2] Enhancing Robustness of Viewpoint Changes in 3D Skeleton-Based Human Action Recognition
    Park, Jinyoon
    Kim, Chulwoong
    Kim, Seung-Chan
    MATHEMATICS, 2023, 11 (15)
  • [3] Rethinking the ST-GCNs for 3D skeleton-based human action recognition
    Peng, Wei
    Shi, Jingang
    Varanka, Tuomas
    Zhao, Guoying
    NEUROCOMPUTING, 2021, 454 : 45 - 53
  • [4] 3D skeleton-based action recognition with convolutional neural networks
    Van-Nam Hoang
    Thi-Lan Le
    Thanh-Hai Tran
    Hai-Vu
    Van-Toi Nguyen
    2019 INTERNATIONAL CONFERENCE ON MULTIMEDIA ANALYSIS AND PATTERN RECOGNITION (MAPR), 2019,
  • [5] Learning Clip Representations for Skeleton-Based 3D Action Recognition
    Ke, Qiuhong
    Bennamoun, Mohammed
    An, Senjian
    Sohel, Ferdous
    Boussaid, Farid
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) : 2842 - 2855
  • [6] Skeleton-Based Square Grid for Human Action Recognition With 3D Convolutional Neural Network
    Ding, Wenwen
    Ding, Chongyang
    Li, Guang
    Liu, Kai
    IEEE ACCESS, 2021, 9 : 54078 - 54089
  • [7] SKELETON-BASED MODELING OF 3D SURFACES
    Jankauskas, Kestutis
    Noreika, Algirdas
    INFORMATION TECHNOLOGIES' 2009, 2009, : 235 - 242
  • [8] Skeleton Graph Scattering Networks for 3D Skeleton-based Human Motion Prediction
    Li, Maosen
    Chen, Siheng
    Liu, Zihui
    Zhang, Zijing
    Xie, Lingxi
    Tian, Qi
    Zhang, Ya
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 854 - 864
  • [9] Mix Dimension in Poincare Geometry for 3D Skeleton-based Action Recognition
    Peng, Wei
    Shi, Jingang
    Xia, Zhaoqiang
    Zhao, Guoying
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 1432 - 1440
  • [10] A 3D graph convolutional networks model for 2D skeleton-based human action recognition
    Weng, Libo
    Lou, Weidong
    Shen, Xin
    Gao, Fei
    IET IMAGE PROCESSING, 2023, 17 (03) : 773 - 783