The Dissection of Expression Quantitative Trait Locus Hotspots

被引:28
作者
Tian, Jianan [1 ]
Keller, Mark P. [2 ]
Broman, Aimee Teo
Kendziorski, Christina
Yandell, Brian S. [1 ,3 ]
Attie, Alan D. [2 ]
Broman, Karl W.
机构
[1] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Hort, 1575 Linden Dr, Madison, WI 53706 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
eQTL; pleiotropy; multivariate analysis; data visualization; gene expression; GENE-EXPRESSION; REGULATORY VARIATION; DISCOVERY; MOUSE;
D O I
10.1534/genetics.115.183624
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Studies of the genetic loci that contribute to variation in gene expression frequently identify loci with broad effects on gene expression: expression quantitative trait locus hotspots. We describe a set of exploratory graphical methods as well as a formal likelihood-based test for assessing whether a given hotspot is due to one or multiple polymorphisms. We first look at the pattern of effects of the locus on the expression traits that map to the locus: the direction of the effects and the degree of dominance. A second technique is to focus on the individuals that exhibit no recombination event in the region, apply dimensionality reduction (e.g., with linear discriminant analysis), and compare the phenotype distribution in the nonrecombinant individuals to that in the recombinant individuals: if the recombinant individuals display a different expression pattern than the nonrecombinant individuals, this indicates the presence of multiple causal polymorphisms. In the formal likelihood-based test, we compare a two-locus model, with each expression trait affected by one or the other locus, to a single-locus model. We apply our methods to a large mouse intercross with gene expression microarray data on six tissues.
引用
收藏
页码:1563 / +
页数:18
相关论文
共 29 条
[1]   The role of regulatory variation in complex traits and disease [J].
Albert, Frank W. ;
Kruglyak, Leonid .
NATURE REVIEWS GENETICS, 2015, 16 (04) :197-212
[2]  
Anderson T.W., 2003, An introduction to multivariate statistical analysis, V3rd, P291
[3]   Genetical Genomics: Spotlight on QTL Hotspots [J].
Breitling, Rainer ;
Li, Yang ;
Tesson, Bruno M. ;
Fu, Jingyuan ;
Wu, Chunlei ;
Wiltshire, Tim ;
Gerrits, Alice ;
Bystrykh, Leonid V. ;
de Haan, Gerald ;
Su, Andrew I. ;
Jansen, Ritsert C. .
PLOS GENETICS, 2008, 4 (10)
[4]   Genetic dissection of transcriptional regulation in budding yeast [J].
Brem, RB ;
Yvert, G ;
Clinton, R ;
Kruglyak, L .
SCIENCE, 2002, 296 (5568) :752-755
[5]  
Broman KW, 2009, STAT BIOL HEALTH, P1, DOI 10.1007/978-0-387-92125-9_1
[6]   R/qtl: QTL mapping in experimental crosses [J].
Broman, KW ;
Wu, H ;
Sen, S ;
Churchill, GA .
BIOINFORMATICS, 2003, 19 (07) :889-890
[7]  
Broman KW, 2001, LAB ANIMAL, V30, P44
[8]   STOCKS FOR DETECTING LINKAGE IN THE MOUSE, AND THE THEORY OF THEIR DESIGN [J].
CARTER, TC ;
FALCONER, DS .
JOURNAL OF GENETICS, 1951, 50 (02) :307-323
[9]   Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function [J].
Chesler, EJ ;
Lu, L ;
Shou, SM ;
Qu, YH ;
Gu, J ;
Wang, JT ;
Hsu, HC ;
Mountz, JD ;
Baldwin, NE ;
Langston, MA ;
Threadgill, DW ;
Manly, KF ;
Williams, RW .
NATURE GENETICS, 2005, 37 (03) :233-242
[10]   Joint Modelling of Confounding Factors and Prominent Genetic Regulators Provides Increased Accuracy in Genetical Genomics Studies [J].
Fusi, Nicolo ;
Stegle, Oliver ;
Lawrence, Neil D. .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (01)