REMOTE SENSING IMAGE SPATIO-TEMPORAL FUSION VIA A GENERATIVE ADVERSARIAL NETWORK THROUGH ONE PRIOR IMAGE PAIR

被引:3
作者
Song, Yiyao [1 ]
Zhang, Hongyan [1 ]
Zhang, Liangpei [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
基金
中国国家自然科学基金;
关键词
Remote sensing; spatio-temporal fusion; one prior image pair; generative adversarial network; REFLECTANCE FUSION;
D O I
10.1109/IGARSS39084.2020.9324101
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatio-temporal fusion is a promising way to deal with the tradeoff between the temporal resolution and spatial resolution of the remote sensing images This paper presents a novel remote sensing image spatio-temporal fusion model to expand the application of spatio-temporal fusion with insufficient data, based on a generative adversarial network to handle one prior image pair cases (OPGAN). Considering the huge spatial resolution gap between the high-spatial, low-temporal (HSLT) resolution Landsat imagery and the corresponding low-spatial, high-temporal (LSHT) resolution MODIS imagery, the proposed OPGAN simultaneously trains a generator and a discriminator in a min-max game to reconstruct the high-spatial-high-temporal (HSHT) resolution Landsat images, significantly improving the accuracy of change prediction with the help of the temporal changes and sensor differences. Experimental results on three representative Landsat-MODIS datasets illustrate the effectiveness of the proposed OPGAN method.
引用
收藏
页码:7009 / 7012
页数:4
相关论文
共 10 条
[1]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[2]   Fusing Landsat and MODIS Data for Vegetation Monitoring [J].
Gao, Feng ;
Hilker, Thomas ;
Zhu, Xiaolin ;
Anderson, Martha C. ;
Masek, Jeffrey G. ;
Wang, Peijuan ;
Yang, Yun .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2015, 3 (03) :47-60
[3]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[4]   Spatiotemporal Reflectance Fusion via Sparse Representation [J].
Huang, Bo ;
Song, Huihui .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (10) :3707-3716
[5]   Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks [J].
Song, Huihui ;
Liu, Qingshan ;
Wang, Guojie ;
Hang, Renlong ;
Huang, Bo .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (03) :821-829
[6]   Spatiotemporal Satellite Image Fusion Through One-Pair Image Learning [J].
Song, Huihui ;
Huang, Bo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (04) :1883-1896
[7]   Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data [J].
Weng, Qihao ;
Fu, Peng ;
Gao, Feng .
REMOTE SENSING OF ENVIRONMENT, 2014, 145 :55-67
[8]   Assessments of urban growth in the Tampa Bay watershed using remote sensing data [J].
Xian, G ;
Crane, M .
REMOTE SENSING OF ENVIRONMENT, 2005, 97 (02) :203-215
[9]   A flexible spatiotemporal method for fusing satellite images with different resolutions [J].
Zhu, Xiaolin ;
Helmer, Eileen H. ;
Gao, Feng ;
Liu, Desheng ;
Chen, Jin ;
Lefsky, Michael A. .
REMOTE SENSING OF ENVIRONMENT, 2016, 172 :165-177
[10]   An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions [J].
Zhu, Xiaolin ;
Chen, Jin ;
Gao, Feng ;
Chen, Xuehong ;
Masek, Jeffrey G. .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (11) :2610-2623