Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode

被引:45
|
作者
Buitenweg, J
Rutten, WLC
Marani, E
机构
[1] Univ Twente, Inst Biomed Technol, Fac Elect Engn, Signals & Syst Grp, NL-7500 AE Enschede, Netherlands
[2] Leiden Univ, Med Ctr, Dept Neurosurg, Neuroregulat Grp, NL-2300 RC Leiden, Netherlands
关键词
ccultured neurons; finite-element modeling; multielectrode arrays; neuron-electrode contact;
D O I
10.1109/TBME.2003.809486
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The electrical contact between a substrate embedded microelectrode and a cultured neuron depends on the geometry of the neuron-electrode interface. Interpretation and improvement of these contacts requires proper modeling of all coupling mechanisms. In literature, it is common practice to model the neuron-electrode contact using lumped circuits in which large simplifications are made in the representation of the interface geometry. In this paper, the finite-element method is, used to model the neuron-electrode interface, which permits numerical. solutions for a variety of interface geometries. The simulation results offer detailed spatial and temporal information about the combined electrical behavior of extracellular volume, electrode-electrolyte interface and neuronal membrane.
引用
收藏
页码:501 / 509
页数:9
相关论文
共 50 条
  • [1] Finite Element Modeling of the Nano-scale Adhesive Contact and the Geometry-based Pull-off Force
    Zhang, Xiangjun
    Zhang, Xiaohao
    Wen, Shizhu
    TRIBOLOGY LETTERS, 2011, 41 (01) : 65 - 72
  • [2] Finite Element Modeling of the Nano-scale Adhesive Contact and the Geometry-based Pull-off Force
    Xiangjun Zhang
    Xiaohao Zhang
    Shizhu Wen
    Tribology Letters, 2011, 41 : 65 - 72
  • [3] GEOMETRY-BASED STIFFNESS PARAMETERS FOR PREDICTING APPROACH OF LIMIT POINTS IN FINITE-ELEMENT STUDIES
    SHAH, JJ
    BUSBY, HR
    KINZEL, GL
    JOURNAL OF VIBRATION ACOUSTICS STRESS AND RELIABILITY IN DESIGN-TRANSACTIONS OF THE ASME, 1986, 108 (04): : 462 - 468
  • [4] Finite-element modeling of thermal contact resistances and insulation layers in electrical machines
    Driesen, J
    Belmans, RJM
    Hameyer, K
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2001, 37 (01) : 15 - 20
  • [5] FINITE-ELEMENT MODELING OF ROLLING-CONTACT
    ZEID, I
    PADOVAN, J
    COMPUTERS & STRUCTURES, 1981, 14 (1-2) : 163 - 170
  • [6] Effect of planar microelectrode geometry on neuron stimulation: Finite element modeling and experimental validation of the efficient electrode shape
    Ghazavi, Atefeh
    Westwick, David
    Xu, Fenglian
    Wijdenes, Pierre
    Syed, Naweed
    Dalton, Colin
    JOURNAL OF NEUROSCIENCE METHODS, 2015, 248 : 51 - 58
  • [7] FINITE-ELEMENT MODELING OF ELECTRODE SKIN CONTACT IMPEDANCE IN ELECTRICAL-IMPEDANCE TOMOGRAPHY
    HUA, P
    WOO, EJ
    WEBSTER, JG
    TOMPKINS, WJ
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1993, 40 (04) : 335 - 343
  • [8] Multiphysics Finite-Element Modeling of the Neuron/Electrode Electrodiffusive Interaction
    Leva, Federico
    Verardo, Claudio
    Mele, Leandro Julian
    Palestri, Pierpaolo
    Selmi, Luca
    2022 IEEE SENSORS, 2022,
  • [9] FINITE-ELEMENT MODELING OF ELECTRODE CONTACTS IN ELECTRICAL INJURY
    CHILBERT, M
    PRIETO, T
    SANCES, A
    SWIONTEK, T
    MYKLEBUST, J
    IMAGES OF THE TWENTY-FIRST CENTURY, PTS 1-6, 1989, 11 : 232 - 233
  • [10] A geometry-based finite element tool for evaluating mitral valve biomechanics
    de Oliveira, Diana C.
    Espino, Daniel M.
    Deorsola, Luca
    Buchan, Keith
    Dawson, Dana
    Shepherd, Duncan E. T.
    MEDICAL ENGINEERING & PHYSICS, 2023, 121