On distance matrices of helm graphs obtained from wheel graphs with an even number of vertices

被引:4
作者
Goel, Shivani [1 ]
机构
[1] IIT Madras, Dept Math, Chennai, Tamil Nadu, India
关键词
Helm graphs; Laplacian matrices; Distance matrices; Circulant matrices;
D O I
10.1016/j.laa.2021.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n >= 4. The helm graph H-n on 2n - 1 vertices is obtained from the wheel graph W-n by adjoining a pendant edge to each vertex of the outer cycle of W-n. Suppose n is even. Let D := [d(ij)] be the distance matrix of H-n. In this paper, we first show that det(D) = 3(n-1)2(n-1). Next, we find a matrix L and a vector u such that D-1 = -1/2 L + 4/3(n-1)uu'. We also prove an interlacing property between the eigenvalues of L and D. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:86 / 104
页数:19
相关论文
共 11 条
[1]  
Alfakih A., 2018, EUCLIDEAN DISTANCE M
[2]   Distance spectra of graphs: A survey [J].
Aouchiche, Mustapha ;
Hansen, Pierre .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 :301-386
[3]   An inverse formula for the distance matrix of a wheel graph with an even number of vertices [J].
Balaji, R. ;
Bapat, R. B. ;
Goel, Shivani .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 610 :274-292
[4]   On distance matrices of wheel graphs with an odd number of vertices [J].
Balaji, R. ;
Bapat, R. B. ;
Goel, Shivani .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (17) :3370-3401
[5]   Inverse of the distance matrix of a block graph [J].
Bapat, R. B. ;
Sivasubramanian, Sivaramakrishnan .
LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (12) :1393-1397
[6]   DISTANCE MATRIX POLYNOMIALS OF TREES [J].
GRAHAM, RL ;
LOVASZ, L .
ADVANCES IN MATHEMATICS, 1978, 29 (01) :60-88
[7]   ADDRESSING PROBLEM FOR LOOP SWITCHING [J].
GRAHAM, RL ;
POLLAK, HO .
BELL SYSTEM TECHNICAL JOURNAL, 1971, 50 (08) :2495-+
[8]   Inverse of the distance matrix of a bi-block graph [J].
Hou, Yaoping ;
Sun, Yajing .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (08) :1509-1517
[9]   Euclidean graph distance matrices of generalizations of the star graph [J].
Jaklic, Gasper ;
Modic, Jolanda .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 230 :650-663
[10]  
Zhang F., 2011, MATRIX THEORY BASIC, DOI [DOI 10.1007/978-1-4614-1099-7, 10.1007/978-1-4614-1099-7]