On the Dimension of Bivariate Weak Spline Space Over Regular Rectilinear Partition
被引:0
作者:
Lang, Feng-Gong
论文数: 0引用数: 0
h-index: 0
机构:
Ocean Univ China, Sch Math Sci, Qingdao 266071, Shandong, Peoples R ChinaOcean Univ China, Sch Math Sci, Qingdao 266071, Shandong, Peoples R China
Lang, Feng-Gong
[1
]
Wang, Ren-Hong
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Inst Math Sci, Dalian 116024, Liaoning, Peoples R ChinaOcean Univ China, Sch Math Sci, Qingdao 266071, Shandong, Peoples R China
Wang, Ren-Hong
[2
]
机构:
[1] Ocean Univ China, Sch Math Sci, Qingdao 266071, Shandong, Peoples R China
[2] Dalian Univ Technol, Inst Math Sci, Dalian 116024, Liaoning, Peoples R China
Bivariate spline;
bivariate weak spline;
regular rectilinear partition;
appointed point sets;
dimension;
ELEMENT;
D O I:
10.1007/s00025-009-0003-y
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we mainly study the dimensions of bivariate weak spline spaces W(k)(mu) (I(1)Delta) (k >= 2 mu+1) and W(2)(1) (I(1)*Delta) by using the smoothing cofactor-conformality method, where I(1)Delta and I(1)*Delta are regular rectilinear partitions with appointed point sets. Some future works relative to bivariate weak splines are also listed at the end of this paper.