Nanofiltration performance of glutaraldehyde crosslinked graphene oxide-cellulose nanofiber membrane

被引:26
作者
Mohammed, Shabin [1 ]
Hegab, Hanaa M. [1 ,2 ]
Ou, Ranwen [3 ]
机构
[1] Monash Univ, Dept Chem Engn, Clayton, Vic 3800, Australia
[2] Khalifa Univ Sci & Technol, Dept Chem Engn, Abu Dhabi 127788, U Arab Emirates
[3] Xiamen Univ, Coll Environm & Ecol, Xiamen 361005, Fujian, Peoples R China
关键词
Graphene oxide; Membrane; Cellulose nanofibers; Organic solvent nanofiltration; ORGANIC-SOLVENT NANOFILTRATION; RESISTANT NANOFILTRATION; SALT REJECTION; WATER; FABRICATION; TRANSPORT; FLUX; SEPARATION; PRECISE; LINKING;
D O I
10.1016/j.cherd.2022.04.039
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Cellulose nanofibers have been widely used in membrane fabrication due to their unique structure, hydrophilicity, sustainability, facile surface modification, and low cost. In this study, the efficient combination of the precise molecular sieving characteristics of graphene oxide (GO) and the high permeability of the cellulose nanofibers (CNFs) network is demonstrated. GO nanosheets were incorporated into the CNF matrix using a facile vacuum filtration technique followed by chemical cross-linking. Cross-linking with glutaraldehyde not only resisted membrane swelling but also improved molecular selectivity. The nanofiltration performance of prepared membranes was evaluated in both aqueous and organic solutions. The optimized crosslinked membranes exhibited a pure solvent flux of 13.9 +/- 1.9 Lm(-2)h(-1)bar(-1) and 4.1 +/- 0.35 Lm(-2)h(-1)bar(-1) for water and ethanol respectively, while maintaining a rejection above 90% for Rose Bengal and Brilliant Blue dyes. (C) 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 74 条
[1]   Solvent Transport Behavior of Shear Aligned Graphene Oxide Membranes and Implications in Organic Solvent Nanofiltration [J].
Akbari, Abozar ;
Meragawi, Sally E. ;
Martin, Samuel T. ;
Corry, Ben ;
Shamsaei, Ezzatollah ;
Easton, Christopher D. ;
Bhattacharyya, Dibakar ;
Majumder, Mainak .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) :2067-2074
[2]   Graphene-based nanofiltration nanofiltration membranes for improving salt rejection, water flux and antifouling-A review [J].
Anand, Anisha ;
Unnikrishnan, Binesh ;
Mao, Ju-Yi ;
Lin, Han-Jia ;
Huang, Chih-Ching .
DESALINATION, 2018, 429 :119-133
[3]  
Anslyn E. V., 2006, MODERN PHYS ORGANIC
[4]   Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation [J].
Ao, Chenghong ;
Yuan, Wei ;
Zhao, Jiangqi ;
He, Xu ;
Zhang, Xiaofang ;
Li, Qingye ;
Xia, Tian ;
Zhang, Wei ;
Lu, Canhui .
CARBOHYDRATE POLYMERS, 2017, 175 :216-222
[5]   Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties [J].
Bano, Saira ;
Mahmood, Asif ;
Kim, Seong-Joong ;
Lee, Kew-Ho .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (05) :2065-2071
[6]   Organic Solvent Nanofiltration in Pharmaceutical Industry [J].
Buonomenna, M. G. ;
Bae, J. .
SEPARATION AND PURIFICATION REVIEWS, 2015, 44 (02) :157-182
[7]   Ultrafast-Selective Nanofiltration of an Hybrid Membrane Comprising Laminated Reduced Graphene Oxide/Graphene Oxide Nanoribbons [J].
Cho, Kyeong Min ;
Lee, Hyeong-Jin ;
Nam, Yoon Tae ;
Kim, Yong-Jae ;
Kim, Chansol ;
Kang, Kyoung Min ;
Torres, Claudio Adrian Ruiz ;
Kim, Dae Woo ;
Jung, Hee-Tae .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (30) :27004-27010
[8]   UV-Enhanced Sacrificial Layer Stabilised Graphene Oxide Hollow Fibre Membranes for Nanofiltration [J].
Chong, J. Y. ;
Aba, N. F. D. ;
Wang, B. ;
Mattevi, C. ;
Li, K. .
SCIENTIFIC REPORTS, 2015, 5
[9]   Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres [J].
De Rosa, Igor Maria ;
Kenny, Jose M. ;
Maniruzzaman, Mohd ;
Moniruzzaman, Md ;
Monti, Marco ;
Puglia, Debora ;
Santulli, Carlo ;
Sarasini, Fabrizio .
COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (02) :246-254
[10]  
DeRuiter J, CARBOXYLIC ACID ST 1