On Schrodinger operators perturbed by fractal potentials

被引:9
作者
Albeverio, S
Koshmanenko, V
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[2] Bonn BiBoS, Bielefeld, Germany
[3] CERFIM, Locarno, Switzerland
[4] Inst Math, UA-01601 Kyiv, Ukraine
关键词
fractals; Schrodinger operators; singular perturbations; negative eigenvalues;
D O I
10.1016/S0034-4877(00)80001-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let Gamma subset of R-n be a self-similar fractal. We discuss the problem of definition for the Schrodinger operators associated with the formal expression -Delta(beta,V,Gamma) = -Delta + beta V, beta epsilon R, where V is a generalzed potential (distribution) supported by Gamma and acting in the Sobolev scale, from W-2(1)(R-n) into W-2(-l) (R-n). We give a precise sense to -Delta(beta,V,Gamma) as a self-adjoint operator in L-2 (R-n), present a qualitative characterization of its negative eigenvalues and prove that the limit -Delta(infinity,V,Gamma) = lim(beta-->+/-infinity) -Delta(beta,V,Gamma) exists in the strong resolvent sense and coincides with the Friedrichs extension of the symmetric operator -(Delta) over dot = -Delta \ {f epsilon W-2(2) (R-n) : f \ Gamma = 0}. In addition, we find conditions for -1 to be the lowest negative eigenvalue for -Delta(beta,V,Gamma).
引用
收藏
页码:307 / 326
页数:20
相关论文
共 37 条
[1]  
ADAMS DR, 1996, FUNCTIONAL SPACES PO
[2]  
AKHIEZER NI, 1966, THEORY LINEAR OPERAT
[3]  
ALBEVEIRO S, 1988, SOLVABLE MODELS QUAN
[4]   Singular rank one perturbations of self-adjoint operators and Krein theory of self-adjoint extensions [J].
Albeverio, S ;
Koshmanenko, V .
POTENTIAL ANALYSIS, 1999, 11 (03) :279-287
[5]   On form-sum approximations of singularly perturbed positive self-adjoint operators [J].
Albeverio, S ;
Koshmanenko, V .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 169 (01) :32-51
[6]   SQUARE POWERS OF SINGULARLY PERTURBED OPERATORS [J].
ALBEVERIO, S ;
KARWOWSKI, W ;
KOSHMANENKO, V .
MATHEMATISCHE NACHRICHTEN, 1995, 173 :5-24
[7]  
ALBEVERIO S, 1992, IDEAS METHODS QUANTU, V2, P63
[8]  
ALBEVERIO S, 1997, METHODS FUNCT ANAL T, V3, P1
[9]  
ALBEVERIO S, 2000, REV MATH PHYS, V12
[10]  
Albeverio S., 1999, METHODS FUNCT ANAL T, V5, P13