Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites

被引:25
|
作者
Khanolkar, Gauri R. [1 ]
Rauls, Michael B. [2 ]
Kelly, James P. [3 ,4 ]
Graeve, Olivia A. [3 ,4 ]
Hodge, Andrea M. [1 ,5 ]
Eliasson, Veronica [1 ]
机构
[1] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
[2] CALTECH, Grad Aerosp Labs, Pasadena, CA 91125 USA
[3] Univ Calif San Diego, Dept Mech & Aerosp Engn, San Diego, CA 92093 USA
[4] Alfred Univ, Kazuo Inamori Sch Engn, Alfred, NY 14802 USA
[5] Univ So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
MECHANICAL-PROPERTIES; FRACTURE-BEHAVIOR; SPALL STRENGTH; BULK; TEMPERATURE; ALLOYS; DEVITRIFICATION; COMPRESSION;
D O I
10.1038/srep22568
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 +/- 0.53 GPa for SAM2X5-600 and 11.76 +/- 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites
    Gauri R. Khanolkar
    Michael B. Rauls
    James P. Kelly
    Olivia A. Graeve
    Andrea M. Hodge
    Veronica Eliasson
    Scientific Reports, 6
  • [2] Spark plasma sintering of in situ and ex situ iron-based amorphous matrix composites
    Singh, Ashish
    Harimkar, Sandip P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 497 (1-2) : 121 - 126
  • [3] Iron-based Metal Matrix Composites
    Metall-Matrix-Verbundwerkstoffe auf Eisenbasis
    Arth, Gregor (gregor.arth@unileoben.ac.at), 2012, Springer (157): : 8 - 9
  • [4] In-situ Dendrite/Metallic Glass Matrix Composites: A Review
    Qiao, Junwei
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2013, 29 (08) : 685 - 701
  • [5] In-situ Dendrite/Metallic Glass Matrix Composites:A Review
    Junwei Qiao
    JournalofMaterialsScience&Technology, 2013, 29 (08) : 685 - 701
  • [6] Wear behaviour of Zr-based in situ bulk metallic glass matrix composites
    Wu, X. F.
    Zhang, G. A.
    Wu, F. F.
    BULLETIN OF MATERIALS SCIENCE, 2016, 39 (03) : 703 - 709
  • [7] Wear behaviour of Zr-based in situ bulk metallic glass matrix composites
    X F WU
    G A ZHANG
    F F WU
    Bulletin of Materials Science, 2016, 39 : 703 - 709
  • [8] Effect of matrix composition on the microstructure of in situ synthesized TiC particulate reinforced iron-based composites
    Mei, Z
    Yan, YW
    Cui, K
    MATERIALS LETTERS, 2003, 57 (21) : 3175 - 3181
  • [9] Metallic glass matrix composites
    Qiao, Junwei
    Jia, Haoling
    Liaw, Peter K.
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2016, 100 : 1 - 69
  • [10] Contributions to the homogeneous plastic flow of in situ metallic glass matrix composites
    Fu, XL
    Li, Y
    Schuh, CA
    APPLIED PHYSICS LETTERS, 2005, 87 (24) : 1 - 3