Multivariate Kalman filtering for spatio-temporal processes

被引:3
|
作者
Ferreira, Guillermo [1 ]
Mateu, Jorge [2 ]
Porcu, Emilio [3 ,4 ]
机构
[1] Univ Concepcion, Dept Stat, Concepcion, Chile
[2] Univ Jaume 1, Dept Math, Castellon de La Plana, Spain
[3] Trinity Coll Dublin, Sch Comp Sci & Stat, Dublin, Ireland
[4] Khalifa Univ Sci & Technol, Dept Math, Abu Dhabi, U Arab Emirates
关键词
Cross-covariance; Geostatistics; Kalman filter; State space system; Time-varying models; LONG-MEMORY; COVARIANCE FUNCTIONS; MODELS; PREDICTION;
D O I
10.1007/s00477-022-02266-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An increasing interest in models for multivariate spatio-temporal processes has been noted in the last years. Some of these models are very flexible and can capture both marginal and cross spatial associations amongst the components of the multivariate process. In order to contribute to the statistical analysis of these models, this paper deals with the estimation and prediction of multivariate spatio-temporal processes by using multivariate state-space models. In this context, a multivariate spatio-temporal process is represented through the well-known Wold decomposition. Such an approach allows for an easy implementation of the Kalman filter to estimate linear temporal processes exhibiting both short and long range dependencies, together with a spatial correlation structure. We illustrate, through simulation experiments, that our method offers a good balance between statistical efficiency and computational complexity. Finally, we apply the method for the analysis of a bivariate dataset on average daily temperatures and maximum daily solar radiations from 21 meteorological stations located in a portion of south-central Chile.
引用
收藏
页码:4337 / 4354
页数:18
相关论文
共 50 条
  • [1] Multivariate Kalman filtering for spatio-temporal processes
    Guillermo Ferreira
    Jorge Mateu
    Emilio Porcu
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 4337 - 4354
  • [2] Multilevel ensemble Kalman filtering for spatio-temporal processes
    Chernov, Alexey
    Hoel, Hakon
    Law, Kody J. H.
    Nobile, Fabio
    Tempone, Raul
    NUMERISCHE MATHEMATIK, 2021, 147 (01) : 71 - 125
  • [3] Multilevel ensemble Kalman filtering for spatio-temporal processes
    Alexey Chernov
    Håkon Hoel
    Kody J. H. Law
    Fabio Nobile
    Raul Tempone
    Numerische Mathematik, 2021, 147 : 71 - 125
  • [4] Efficient spatio-temporal Gaussian regression via Kalman filtering
    Todescato, Marco
    Carron, Andrea
    Carli, Ruggero
    Pillonetto, Gianluigi
    Schenato, Luca
    AUTOMATICA, 2020, 118
  • [5] Combining Spatio-Temporal Context and Kalman Filtering for Visual Tracking
    Yang, Haoran
    Wang, Juanjuan
    Miao, Yi
    Yang, Yulu
    Zhao, Zengshun
    Wang, Zhigang
    Sun, Qian
    Wu, Dapeng Oliver
    MATHEMATICS, 2019, 7 (11)
  • [6] Multivariate spatio-temporal Kalman filter and its application in deformation analysis
    Shi Q.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (12): : 2229 - 2245
  • [7] Spatio-temporal EEG brain imaging based on reduced Kalman filtering
    Lopez, J. D.
    Espinosa, J. J.
    2011 5TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2011, : 64 - 67
  • [8] Spatio-temporal processes
    Harvill, Jane L.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (03) : 375 - 382
  • [9] Spatio-temporal filtering using wavelets
    M. D. Ruiz-Medina
    J. M. Angulo
    Stochastic Environmental Research and Risk Assessment, 2002, 16 : 241 - 266
  • [10] Beamforming using spatio-temporal filtering
    Liu, J
    Kim, K
    Insana, MF
    Brunke, S
    2005 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4, 2005, : 1216 - 1219