High-Throughput Single Cell Proteomics Enabled by Multiplex Isobaric Labeling in a Nanodroplet Sample Preparation Platform

被引:145
作者
Dou, Maowei [1 ]
Clair, Geremy [2 ]
Tsai, Chia-Feng [2 ]
Xu, Kerui [1 ]
Chrisler, William B. [2 ]
Sontag, Ryan L. [2 ]
Zhao, Rui [1 ]
Moore, Ronald J. [2 ]
Liu, Tao [2 ]
Pasa-Tolic, Ljiljana [1 ]
Smith, Richard D. [2 ]
Shi, Tujin [2 ]
Adkins, Joshua N. [2 ]
Qian, Wei-Jun [2 ]
Kelly, Ryan T. [1 ,3 ]
Ansong, Charles [2 ]
Zhu, Ying [1 ]
机构
[1] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA
[2] Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA 99354 USA
[3] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84604 USA
关键词
TANDEM MASS TAGS; LIQUID-CHROMATOGRAPHY; HETEROGENEITY; QUANTIFICATION; SPECTROMETRY; GENE; QUANTITATION; DISCOVERY; PACKAGE; SYSTEM;
D O I
10.1021/acs.analchem.9b03349
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Effective extension of mass spectrometry-based proteomics to single cells remains challenging. Herein we combined microfluidic nanodroplet technology with tandem mass tag (TMT) isobaric labeling to significantly improve analysis throughput and proteome coverage for single mammalian cells. Isobaric labeling facilitated multiplex analysis of single cell-sized protein quantities to a depth of similar to 1 600 proteins with a median CV of 10.9% and correlation coefficient of 0.98. To demonstrate in-depth high throughput single cell analysis, the platform was applied to measure protein expression in 72 single cells from three murine cell populations (epithelial, immune, and endothelial cells) in <2 days instrument time with over 2 300 proteins identified. Principal component analysis grouped the single cells into three distinct populations based on protein expression with each population characterized by well-known cell-type specific markers. Our platform enables high throughput and unbiased characterization of single cell heterogeneity at the proteome level.
引用
收藏
页码:13119 / 13127
页数:9
相关论文
共 54 条
[21]   Single-cell analysis tools for drug discovery and development [J].
Heath, James R. ;
Ribas, Antoni ;
Mischel, Paul S. .
NATURE REVIEWS DRUG DISCOVERY, 2016, 15 (03) :204-216
[22]   Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas [J].
Hou, Yu ;
Guo, Huahu ;
Cao, Chen ;
Li, Xianlong ;
Hu, Boqiang ;
Zhu, Ping ;
Wu, Xinglong ;
Wen, Lu ;
Tang, Fuchou ;
Huang, Yanyi ;
Peng, Jirun .
CELL RESEARCH, 2016, 26 (03) :304-319
[23]  
Hughes AJ, 2014, NAT METHODS, V11, P749, DOI [10.1038/nmeth.2992, 10.1038/NMETH.2992]
[24]   Adjusting batch effects in microarray expression data using empirical Bayes methods [J].
Johnson, W. Evan ;
Li, Cheng ;
Rabinovic, Ariel .
BIOSTATISTICS, 2007, 8 (01) :118-127
[25]  
Josse J, 2016, J STAT SOFTW, V70
[26]   PRISM: A data management system for high-throughput proteomics [J].
Kiebel, GR ;
Auberry, KJ ;
Jaitly, N ;
Clark, DA ;
Monroe, ME ;
Peterson, ES ;
Tolic, N ;
Anderson, GA ;
Smith, RD .
PROTEOMICS, 2006, 6 (06) :1783-1790
[27]   MS-GF plus makes progress towards a universal database search tool for proteomics [J].
Kim, Sangtae ;
Pevzner, Pavel A. .
NATURE COMMUNICATIONS, 2014, 5
[28]   FactoMineR: An R package for multivariate analysis [J].
Le, Sebastien ;
Josse, Julie ;
Husson, Francois .
JOURNAL OF STATISTICAL SOFTWARE, 2008, 25 (01) :1-18
[29]   The sva package for removing batch effects and other unwanted variation in high-throughput experiments [J].
Leek, Jeffrey T. ;
Johnson, W. Evan ;
Parker, Hilary S. ;
Jaffe, Andrew E. ;
Storey, John D. .
BIOINFORMATICS, 2012, 28 (06) :882-883
[30]   Expression of ezrin correlates with malignant phenotype of lung cancer, and in vitro knockdown of ezrin reverses the aggressive biological behavior of lung cancer cells [J].
Li, Qingchang ;
Gao, Hui ;
Xu, Hongtao ;
Wang, Xin ;
Pan, Yongqi ;
Hao, Fengxia ;
Qiu, Xueshan ;
Stoecker, Maggie ;
Wang, Endi ;
Wang, Enhua .
TUMOR BIOLOGY, 2012, 33 (05) :1493-1504