VIGIL: A Python']Python tool for automatized probabilistic VolcanIc Gas dIspersion modeLling

被引:5
作者
Dioguardi, Fabio [1 ]
Massaro, Silvia [2 ,3 ]
Chiodini, Giovanni [3 ]
Costa, Antonio [3 ]
Folch, Arnau [4 ]
Macedonio, Giovanni [5 ]
Sandri, Laura [3 ]
Selva, Jacopo [3 ]
Tamburello, Giancarlo [3 ]
机构
[1] British Geol Survey, Lyell Ctr, Edinburgh, Midlothian, Scotland
[2] Univ Aldo Moro, Dipartimento Sci Terra & Geoambientali, Via E Orabona 4, I-70125 Bari, Italy
[3] Ist Nazl Geofis & Vulcanol, Sez Bologna, Via D Creti 12, I-40128 Bologna, Italy
[4] Geociencias Barcelona GEO3BCN CSIC, Barcelona, Spain
[5] Ist Nazl Geofis & Vulcanol, Osservatorio Vesuviano, Via Diocleziano 328, I-80124 Naples, Italy
关键词
Atmospheric gas dispersion; Volcanic gases; !text type='Python']Python[!/text] workflow; Diagnostic wind model; Probabilistic volcanic hazard assessment; SHALLOW LAYER MODEL; DENSE GAS; CAMPI-FLEGREI; EVENT TREE; HAZARD; RELEASE; HEALTH;
D O I
10.4401/ag-8796
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Probabilistic volcanic hazard assessment is a standard methodology based on running a deterministic hazard quantification tool multiple times to explore the full range of uncertainty in the input parameters and boundary conditions, in order to probabilistically quantify the variability of outputs accounting for such uncertainties. Nowadays, different volcanic hazards are quantified by means of this approach. Among these, volcanic gas emission is particularly relevant given the threat posed to human health if concentrations and exposure times exceed certain thresholds. There are different types of gas emissions but two main scenarios can be recognized: hot buoyant gas emissions from fumaroles and the ground and dense gas emissions feeding density currents that can occur, e.g., in limnic eruptions. Simulation tools are available to model the evolution of critical gas concentrations over an area of interest. Moreover, in order to perform probabilistic hazard assessments of volcanic gases, simulations should account for the natural variability associated to aspects such as seasonal and daily wind conditions, localized or diffuse source locations, and gas fluxes. Here we present VIGIL (automatized probabilistic VolcanIc Gas dIspersion modeLling), a new Python tool designed for managing the entire simulation workflow involved in single and probabilistic applications of gas dispersion modelling. VIGIL is able to manage the whole process from meteorological data processing, needed to run gas dispersion in both the dilute and dense gas flow scenarios, to the post processing of models' outputs. Two application examples are presented to show some of the modelling capabilities offered by VIGIL.
引用
收藏
页数:14
相关论文
共 38 条
  • [1] The use of a numerical weather prediction model to simulate the release of a dense gas with an application to the Lake Nyos disaster of 1986
    Burton, R. R.
    Dudhia, J.
    Gadian, A. M.
    Mobbs, S. D.
    [J]. METEOROLOGICAL APPLICATIONS, 2017, 24 (01) : 43 - 51
  • [2] Monitoring diffuse volcanic degassing during volcanic unrests: the case of Campi Flegrei (Italy)
    Cardellini, C.
    Chiodini, G.
    Frondini, F.
    Avino, R.
    Bagnato, E.
    Caliro, S.
    Lelli, M.
    Rosiello, A.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [3] Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy)
    Chiodini, G.
    Caliro, S.
    Avino, R.
    Bini, G.
    Giudicepietro, F.
    De Cesare, W.
    Ricciolino, P.
    Aiuppa, A.
    Cardellini, C.
    Petrillo, Z.
    Selva, J.
    Siniscalchi, A.
    Tripaldi, S.
    [J]. JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2021, 414
  • [4] Non-volcanic CO2 Earth degassing: Case of Mefite d'Ansanto (southern Apennines), Italy
    Chiodini, G.
    Granieri, D.
    Avino, R.
    Caliro, S.
    Costa, A.
    Minopoli, C.
    Vilardo, G.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [5] CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy
    Chiodini, G
    Frondini, F
    Cardellini, C
    Granieri, D
    Marini, L
    Ventura, G
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2001, 106 (B8) : 16213 - 16221
  • [6] Copernicus Climate Change Service (C3S), 2017, ERA5 5 GEN ECMWF ATM
  • [7] Short-Range Atmospheric Dispersion of Carbon Dioxide
    Cortis, Andrea
    Oldenburg, Curtis M.
    [J]. BOUNDARY-LAYER METEOROLOGY, 2009, 133 (01) : 17 - 34
  • [8] Costa A, 2005, ANN GEOPHYS-ITALY, V48, P805
  • [9] A shallow-layer model for heavy gas dispersion from natural sources: Application and hazard assessment at Caldara di Manziana, Italy
    Costa, A.
    Chiodini, G.
    Granieri, D.
    Folch, A.
    Hankin, R. K. S.
    Caliro, S.
    Avino, R.
    Cardellini, C.
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2008, 9
  • [10] Costa A, 2016, Rapporti tecnici INGV. 332, P2039