Carbon cloth-MnO2 nanotube composite for flexible supercapacitor

被引:26
作者
Soni, Sumit [1 ]
Pareek, Kapil [2 ]
Jangid, Dinesh Kumar [3 ]
Rohan, Rupesh [4 ]
机构
[1] Amity Univ, Dept Chem, Jaipur, Rajasthan, India
[2] Malaviya Natl Inst Technol, Ctr Energy & Environm, Jaipur 302017, Rajasthan, India
[3] Univ Rajasthan, Dept Chem, Jaipur, Rajasthan, India
[4] Indian Rubber Manufacturers Res Assoc, Thana, Maharashtra, India
关键词
cyclic voltammetry; energy storage; hydrothermal method; specific capacitance; supercapacitor; HYDROTHERMAL SYNTHESIS; MNO2; NANOFLAKES; ENERGY-STORAGE; METAL-OXIDE; ELECTRODE; GRAPHENE; GROWTH; FOAM; ARRAYS;
D O I
10.1002/est2.189
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Three-dimensional MnO2 nanorods were synthesized on a carbon cloth (CC) via hydrothermal method to fabricate binder-free electrode for flexible supercapacitor application. The fabricated MnO2/CC electrode exhibits specific capacitance of 487Fg(-1) at current density of 2Ag(-1) in conventional three electrode system using 1 M Na2SO4 electrolyte. Furthermore, a flexible symmetric supercapacitor is assembled using 1M Na2SO4 electrolyte which shows maximum specific capacitance of 232Fg(-1) at current density of 0.5Ag(-1). The supercapacitor exhibits specific energy up to 5.18Whkg(-1) and specific power of 242Wkg(-1) at 0.5 and 1.0 Ag-1, respectively. Furthermore, the supercapacitor exhibits specific capacitance retention of 91.7% over 1000 charging discharging cycles. The attractive performance suggests that MnO2/CC supercapacitor has potential application for energy storage.
引用
收藏
页数:7
相关论文
共 45 条
[1]   Charge transfer and storage in nanostructures [J].
Bandaru, P. R. ;
Yamada, H. ;
Narayanan, R. ;
Hoefer, M. .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2015, 96 :1-69
[2]   Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes [J].
Cakici, Murat ;
Reddy, Kakarla Raghava ;
Alonso-Marroquin, Fernando .
CHEMICAL ENGINEERING JOURNAL, 2017, 309 :151-158
[3]   Flexible Graphene-Based Supercapacitors: A Review [J].
Chee, W. K. ;
Lim, H. N. ;
Zainal, Z. ;
Huang, N. M. ;
Harrison, I. ;
Andou, Y. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (08) :4153-4172
[4]   Direct growth of flexible carbon nanotube electrodes [J].
Chen, Jun ;
Minett, Andrew I. ;
Liu, Yong ;
Lynam, Carol ;
Sherrell, Peter ;
Wang, Caiyun ;
Wallace, Gordon G. .
ADVANCED MATERIALS, 2008, 20 (03) :566-+
[5]   All-Solid-State Flexible Asymmetric Supercapacitors Fabricated by the Binder-Free Hydrophilic Carbon Cloth@MnO2 and Hydrophilic Carbon Cloth@Polypyrrole Electrodes [J].
Chen, Zhiyuan ;
Zheng, Luyao ;
Zhu, Tao ;
Ma, Zhihao ;
Yang, Yongrui ;
Wei, Chunding ;
Liu, Lei ;
Gong, Xiong .
ADVANCED ELECTRONIC MATERIALS, 2019, 5 (03)
[6]   Polyaniline-Coated Electro-Etched Carbon Fiber Cloth Electrodes for Supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (47) :23584-23590
[7]   Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors [J].
Cheng, Yingwen ;
Lu, Songtao ;
Zhang, Hongbo ;
Varanasi, Chakrapani V. ;
Liu, Jie .
NANO LETTERS, 2012, 12 (08) :4206-4211
[8]   Controlled growth of MnO2 via a facile one-step hydrothermal method and their application in supercapacitors [J].
Chu, Jia ;
Lu, Dengyu ;
Ma, Jing ;
Wang, Min ;
Wang, Xiaoqin ;
Xiong, Shanxin .
MATERIALS LETTERS, 2017, 193 :263-265
[9]   In situ assembly of MnO2 nanowires/graphene oxide nanosheets composite with high specific capacitance [J].
Dai, Kai ;
Lu, Luhua ;
Liang, Changhao ;
Dai, Jianming ;
Liu, Qinzhuang ;
Zhang, Yongxing ;
Zhu, Guangping ;
Liu, Zhongliang .
ELECTROCHIMICA ACTA, 2014, 116 :111-117
[10]   Review of carbon-based electrode materials for supercapacitor energy storage [J].
Dubey, Richa ;
Guruviah, Velmathi .
IONICS, 2019, 25 (04) :1419-1445