Clustering Pathologic Voice with Kohonen SOM and Hierarchical Clustering

被引:1
|
作者
de Oliveira, Alessa Anjos [1 ,2 ]
Dajer, Maria Eugenia [2 ]
Teixeira, Joao Paulo [1 ]
机构
[1] Inst Politecn Braganca, Res Ctr Digitalizat & Intelligent Robot CEDRI, Campus Sta Apolonia, P-5301857 Braganca, Portugal
[2] Univ Tecnol Fed Parana, Campus Cornelio Procopio, BR-86300000 Cornelio Procopio, Brazil
关键词
Acoustic Parameters; Clustering; Hierarchical Clustering; Kohonen's Self-Organizing Maps; Unsupervised Artificial Neural Networks; Voice Pathologies; VOCAL ACOUSTIC ANALYSIS; DYSPHONIC VOICES; CLASSIFICATION; SHIMMER; JITTER;
D O I
10.5220/0010210901580163
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The main purpose of clustering voice pathologies is the attempt to form large groups of subjects with similar pathologies to be used with Deep-Learning. This paper focuses on applying Kohonen's Self-Organizing Maps and Hierarchical Clustering to investigate how these methods behave in the clustering procedure of voice samples by means of the parameters absolute jitter, relative jitter, absolute shimmer, relative shimmer, HNR, NHR and Autocorrelation. For this, a comparison is made between the speech samples of the Control group of subjects, the Hyper-functional Dysphonia and Vocal Folds Paralysis pathologies groups of subjects. As a result, the dataset was divided in two clusters, with no distinction between the pre-defined groups of pathologies. The result is aligned with previous result using statistical analysis.
引用
收藏
页码:158 / 163
页数:6
相关论文
共 50 条
  • [11] Incremental Clustering for Hierarchical Clustering
    Narita, Kakeru
    Hochin, Teruhisa
    Nomiya, Hiroki
    2018 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE/ INTELLIGENCE AND APPLIED INFORMATICS (CSII 2018), 2018, : 102 - 107
  • [12] Using Kohonen-SOM & K-Means Clustering Techniques to Analyze QoS Parameters of RSVP
    Johal, Hartinder Singh
    Singh, Balraj
    Singh, Harwant
    Nagpal, Amandeep
    Virdi, Harjot Singh
    WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, WCECS 2012, VOL I, 2012, : 431 - 436
  • [13] Clustering and Visualizing SOM Results
    Costa, Jose Alfredo F.
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2010, 2010, 6283 : 334 - 343
  • [14] Clustering through SOM Consistency
    Goncalves, Nicolau
    Vigario, Ricardo
    IMAGE ANALYSIS AND RECOGNITION, PT I, 2012, 7324 : 61 - 68
  • [15] Clustering of infrared spectra with Kohonen networks
    Cleva, C
    Cachet, C
    Cabrol-Bass, D
    ANALUSIS, 1999, 27 (01) : 81 - 90
  • [16] A Multivariate Fuzzy Kohonen Clustering Network
    Cavalcanti, Rodrigo B. De C.
    Pimentel, Bruno A.
    De Almeida, Carlos W. D.
    De Souza, Renata M. C. R.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [17] Generalized fuzzy Kohonen clustering networks
    Tamkang Univ, Tamsui, Taiwan
    IEICE Trans Fund Electron Commun Comput Sci, 10 (2144-2150):
  • [18] New fuzzy Kohonen clustering network
    Hu, Weidong
    Yu, Wenxian
    Guo, Guirong
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 1998, 26 (03): : 117 - 119
  • [19] Generalized fuzzy Kohonen clustering networks
    Hsieh, CT
    Chin, CC
    Shen, KM
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1998, E81A (10) : 2144 - 2150
  • [20] Feature selection for binary classification based on class labeling, SOM, and hierarchical clustering
    Zhao Zhengtian
    Rui Zhiyuan
    Duan Xiaoyan
    MEASUREMENT & CONTROL, 2023, 56 (9-10): : 1649 - 1669