Bounded Scaling Function Projective Synchronization of Chaotic Systems with Adaptive Finite-Time Control

被引:6
作者
Xu, Yuhua [1 ]
Zhou, Wuneng [2 ]
Xie, Chengrong [3 ]
机构
[1] Nanjing Audit Univ, Sch Finance, Nanjing 211815, Jiangsu, Peoples R China
[2] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[3] Nanjing Audit Univ, Coll Sci, Nanjing 211815, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaotic system; Projective synchronization; Adaptive synchronization; Finite-time control; COMPLEX DYNAMICAL NETWORKS; VARYING DELAY SYSTEMS; SLIDING MODE CONTROL; NEURAL-NETWORKS; SAMPLED-DATA; UNCERTAIN; STABILIZATION; STABILITY; ATTRACTOR; LEADER;
D O I
10.1007/s00034-017-0717-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates the bounded scaling function projective synchronization of uncertain chaotic systems using adaptive finite-time control. Based on finite-time control and inequality principle, the new adaptive finite-time controller is designed to achieve two chaotic systems scaling function projective synchronized, and uncertain parameters of chaotic systems are also identified. Moreover, in comparison with those of the existing scaling function synchronization, the given scaling function can be more complex bounded functions. Some numerical are also given to show the effectiveness of the proposed method.
引用
收藏
页码:3353 / 3363
页数:11
相关论文
共 40 条
[1]   Adaptive projective lag synchronization of uncertain complex dynamical networks with disturbance [J].
Al-mahbashi, Ghada ;
Noorani, M. S. Md ;
Abu Bakar, Salchinah ;
Vahedi, Shahed .
NEUROCOMPUTING, 2016, 207 :645-652
[2]   Continuous finite-time stabilization of the translational and rotational double integrators [J].
Bhat, SP ;
Bernstein, DS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (05) :678-682
[3]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[4]   Adaptive sliding mode control of chaotic dynamical systems with application to synchronization [J].
Dadras, Sara ;
Momeni, Hamid Reza .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 80 (12) :2245-2257
[5]   Sliding mode control for uncertain new chaotic dynamical system [J].
Dadras, Sara ;
Momeni, Hamid Reza ;
Majd, Vahid Johari .
CHAOS SOLITONS & FRACTALS, 2009, 41 (04) :1857-1862
[6]   Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller [J].
Ding, Zhixia ;
Shen, Yi .
NEURAL NETWORKS, 2016, 76 :97-105
[7]  
Hardy Godfrey Harold, 1952, Inequalities, V2nd
[8]  
He SP, 2010, INT J INNOV COMPUT I, V6, P3853
[9]   Global Synchronization for Coupled Lur'e Dynamical Networks [J].
Hu, Guangzhen .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2013, 32 (06) :2851-2866
[10]   Finite-time lag synchronization of time-varying delayed complex networks via periodically intermittent control and sliding mode control [J].
Jing, Taiyan ;
Chen, Fangqi ;
Zhang, Xiaohua .
NEUROCOMPUTING, 2016, 199 :178-184