Pareto Optimal Solutions to Fractional Optimal Control Problems

被引:0
作者
Malinowska, Agnieszka B. [1 ]
机构
[1] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
来源
INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017) | 2018年 / 1978卷
关键词
D O I
10.1063/1.5044157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of multiobjective discrete fractional optimal control problems is introduced. The main results provide methods for identifying Pareto optimal solutions. A numerical example is given to illustrate the theory.
引用
收藏
页数:4
相关论文
共 13 条
[1]  
Almeida R., 2015, Computational methods in the fractional calculus of variations
[2]  
Bourdin L, 2013, THESIS
[3]   NECESSARY AND SUFFICIENT CONDITIONS FOR PARETO OPTIMAL SOLUTIONS OF COOPERATIVE DIFFERENTIAL GAMES [J].
Engwerda, Jacob .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (06) :3859-3881
[4]  
Goodrich C., 2015, Discrete Fractional Calculus, V1350
[5]  
Kaczorek T, 2011, LECT NOTES CONTR INF, V411, P1, DOI 10.1007/978-3-642-20502-6
[6]  
Malinowska A. B., 2007, INT J ECOLOGICAL EC, V9, P100
[7]  
Malinowska A. B., 2012, Introduction to the fractional calculus of variations
[8]  
Malinowska AB, 2007, PROC EST ACAD SCI-PH, V56, P336
[9]   Multiobjective fractional variational calculus in terms of a combined Caputo derivative [J].
Malinowska, Agnieszka B. ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) :5099-5111
[10]  
Ortigueira M. D., 2010, FRACTIONAL CALCULUS