MONOTONICITY OF THE PRINCIPAL EIGENVALUE OF THE p-LAPLACIAN ON AN ANNULUS

被引:0
作者
Grecu, Andrei [1 ]
Mihailescu, Mihai [1 ,2 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] Univ Bucharest, Res Grp, Project PN III P1 1 1 TE 2016 2233, Bucharest 010014, Romania
来源
MATHEMATICAL REPORTS | 2021年 / 23卷 / 1-2期
关键词
distance function to the boundary; principal eigenvalue; p-Laplacian; INFINITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D > 1 be a positive integer. For each real numbers a and b such that 0 < a < b < infinity consider the annulus A(a, b) := {x is an element of R-D : a < vertical bar x vertical bar < b}. Our goal is to give sufficient conditions on a and b such that the function which gives the principal eigenvalue of the p-Laplacian on A(a, b), subject to the homogeneous Dirichlet boundary condition, be monotone or non-monotone with respect to p is an element of (1 , infinity).
引用
收藏
页码:149 / 155
页数:7
相关论文
共 11 条