Can fermionic dark matter mimic supermassive black holes?

被引:7
作者
Arguelles, C. R. [1 ]
Krut, A. [2 ]
Rueda, J. A. [2 ,3 ]
Ruffini, R. [2 ,4 ]
机构
[1] UNLP, Inst Astrofis La Plata, CCT La Plata, CONICET, B1900FWA, La Plata, Buenos Aires, Argentina
[2] ICRANet, Piazza Repubbl 10, I-65122 Pescara, Italy
[3] Ist Astrofis & Planetol Spaziali, INAF, Via Fosso Cavaliere 100, I-00133 Rome, Italy
[4] INAF, Viale Parco Mellini 84, I-00136 Rome, Italy
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS D | 2019年 / 28卷 / 14期
关键词
Dark matter; galaxies; supermassive black holes; halos; self-gravitating systems; fermions;
D O I
10.1142/S021827181943003X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze the intriguing possibility of explaining both dark mass components in a galaxy: the dark matter (DM) halo and the supermassive dark compact object lying at the center, by a unified approach in terms of a quasi-relaxed system of massive, neutral fermions in general relativity. The solutions to the mass distribution of such a model that fulfill realistic halo boundary conditions inferred from observations, develop a high-density core supported by the fermion degeneracy pressure able to mimic massive black holes at the center of galaxies. Remarkably, these dense core-diluted halo configurations can explain the dynamics of the closest stars around Milky Way's center (SgrA*) all the way to the halo rotation curve, without spoiling the baryonic bulge-disk components, for a narrow particle mass range mc(2 )similar to 10-10(2) keV.
引用
收藏
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 2008, Galactic Dynamics: Second Edition
[2]   Are the most super-massive dark compact objects harbored at the center of dark matter halos? [J].
Argueelles, C. R. ;
Ruffini, R. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2014, 23 (12)
[3]   Novel constraints on fermionic dark matter from galactic observables II: Galaxy scaling relations [J].
Arguelles, C. R. ;
Krut, A. ;
Rueda, J. A. ;
Ruffini, R. .
PHYSICS OF THE DARK UNIVERSE, 2019, 24
[4]   Novel constraints on fermionic dark matter from galactic observables I: The Milky Way [J].
Arguelles, C. R. ;
Krut, A. ;
Rueda, J. A. ;
Ruffini, R. .
PHYSICS OF THE DARK UNIVERSE, 2018, 21 :82-89
[5]   Small-Scale Challenges to the ΛCDM Paradigm [J].
Bullock, James S. ;
Boylan-Kolchin, Michael .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 55, 2017, 55 :343-387
[6]   Generalized thermodynamics and kinetic equations: Boltzmann, Landau, Kramers and Smoluchowski [J].
Chavanis, PH .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 332 :89-122
[7]   HIGH-RESOLUTION ROTATION CURVES AND GALAXY MASS MODELS FROM THINGS [J].
de Blok, W. J. G. ;
Walter, F. ;
Brinks, E. ;
Trachternach, C. ;
Oh, S-H. ;
Kennicutt, R. C., Jr. .
ASTRONOMICAL JOURNAL, 2008, 136 (06) :2648-2719
[8]   Energy input from quasars regulates the growth and activity of black holes and their host galaxies [J].
Di Matteo, T ;
Springel, V ;
Hernquist, L .
NATURE, 2005, 433 (7026) :604-607
[9]   A constant dark matter halo surface density in galaxies [J].
Donato, F. ;
Gentile, G. ;
Salucci, P. ;
Martins, C. Frigerio ;
Wilkinson, M. I. ;
Gilmore, G. ;
Grebel, E. K. ;
Koch, A. ;
Wyse, R. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 397 (03) :1169-1176
[10]   Beyond the bulge: A fundamental relation between supermassive black holes and dark matter halos [J].
Ferrarese, L .
ASTROPHYSICAL JOURNAL, 2002, 578 (01) :90-97