Genome-wide identification and transcriptional expression analysis of superoxide dismutase (SOD) family in wheat (Triticum aestivum)

被引:101
作者
Jiang, Wenqiang [1 ,2 ,3 ]
Yang, Lei [1 ]
He, Yiqin [1 ]
Zhang, Haotian [1 ]
Li, Wei [3 ]
Chen, Huaigu [3 ]
Ma, Dongfang [1 ,2 ]
Yin, Junliang [1 ]
机构
[1] Yangtze Univ, Minist Educ, Engn Res Ctr Ecol & Agr Use Wetland, Hubei Collaborat Innovat Ctr Grain Ind,Coll Agr, Jingzhou, Hubei, Peoples R China
[2] Hubei Acad Agr Sci, Inst Plant Protect & Soil Sci, Wuhan, Hubei, Peoples R China
[3] Jiangsu Acad Agr Sci, Inst Plant Protect, Nanjing, Jiangsu, Peoples R China
基金
国家重点研发计划;
关键词
SOD; Gene structure; Protein characterization; Abiotic stress; Expression profiles; OXIDATIVE STRESS; PROTEIN; CHLOROPLASTS; BIOCHEMISTRY; GENERATION; TOLERANCE; RADICALS; PLANTS; NO;
D O I
10.7717/peerj.8062
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Superoxide dismutases (SODs) are a family of key antioxidant enzymes that play a crucial role in plant growth and development. Previously, this gene family has been investigated in Arabidopsis and rice. In the present study, a genome-wide analysis of the SOD gene family in wheat were performed. Twenty-six SOD genes were identified from the whole genome of wheat, including 17 Cu/Zn-SODs, six Fe-SODs, and three Mn-SODs. The chromosomal location mapping analysis indicated that these three types of SOD genes were only distributed on 2, 4, and 7 chromosomes, respectively. Phylogenetic analyses of wheat SODs and several other species revealed that these SOD proteins can be assigned to two major categories. SOD1 mainly comprises of Cu/Zn-SODs, and SOD2 mainly comprises of Fe-SODs and Mn-SODs. Gene structure and motif analyses indicated that most of the SOD genes showed a relatively conserved exon/intron arrangement and motif composition. Analyses of transcriptional data indicated that most of the wheat SOD genes were expressed in almost all of the examined tissues and had important functions in abiotic stress resistance. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to reveal the regulating roles of wheat SOD gene family in response to NaCl, mannitol, and polyethylene glycol stresses. qRT-PCR showed that eight randomly selected genes with relatively high expression levels responded to all three stresses based on released transcriptome data. However, their degree of response and response patterns were different. Interestingly, among these genes, TaSOD1.7, TaSOD1.9, TaSOD2.1, and TaSOD2.3 feature research value owing to their remarkable expression-fold change in leaves or roots under different stresses. Overall, our results provide a basis of further functional research on the SOD gene family in wheat and facilitate their potential use for applications in the genetic improvement on wheat in drought and salt stress environments.
引用
收藏
页数:26
相关论文
共 76 条
[1]   Superoxide dismutases-a review of the metal-associated mechanistic variations [J].
Abreu, Isabel A. ;
Cabelli, Diane E. .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2010, 1804 (02) :263-274
[2]  
Ahmad P, 2010, PLANT ADAPTATION AND PHYTOREMEDIATION, P99, DOI 10.1007/978-90-481-9370-7_5
[3]   Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J].
Alscher, RG ;
Erturk, N ;
Heath, LS .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (372) :1331-1341
[4]  
[Anonymous], 2017, INT C WIR COMM SIGN, DOI DOI 10.1007/S11099-017-0741-0
[5]   ExPASy: SIB bioinformatics resource portal [J].
Artimo, Panu ;
Jonnalagedda, Manohar ;
Arnold, Konstantin ;
Baratin, Delphine ;
Csardi, Gabor ;
de Castro, Edouard ;
Duvaud, Severine ;
Flegel, Volker ;
Fortier, Arnaud ;
Gasteiger, Elisabeth ;
Grosdidier, Aurelien ;
Hernandez, Celine ;
Ioannidis, Vassilios ;
Kuznetsov, Dmitry ;
Liechti, Robin ;
Moretti, Sebastien ;
Mostaguir, Khaled ;
Redaschi, Nicole ;
Rossier, Gregoire ;
Xenarios, Ioannis ;
Stockinger, Heinz .
NUCLEIC ACIDS RESEARCH, 2012, 40 (W1) :W597-W603
[6]   The MEME Suite [J].
Bailey, Timothy L. ;
Johnson, James ;
Grant, Charles E. ;
Noble, William S. .
NUCLEIC ACIDS RESEARCH, 2015, 43 (W1) :W39-W49
[7]   Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms [J].
Bolwell, GP ;
Davies, DR ;
Gerrish, C ;
Auh, CK ;
Murphy, TM .
PLANT PHYSIOLOGY, 1998, 116 (04) :1379-1385
[8]   SUPEROXIDE-DISMUTASE AND STRESS TOLERANCE [J].
BOWLER, C ;
VANMONTAGU, M ;
INZE, D .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1992, 43 :83-116
[9]   MANGANESE SUPEROXIDE-DISMUTASE CAN REDUCE CELLULAR-DAMAGE MEDIATED BY OXYGEN RADICALS IN TRANSGENIC PLANTS [J].
BOWLER, C ;
SLOOTEN, L ;
VANDENBRANDEN, S ;
DERYCKE, R ;
BOTTERMAN, J ;
SYBESMA, C ;
VANMONTAGU, M ;
INZE, D .
EMBO JOURNAL, 1991, 10 (07) :1723-1732
[10]   Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster [J].
Bubliy, OA ;
Loeschcke, V .
JOURNAL OF EVOLUTIONARY BIOLOGY, 2005, 18 (04) :789-803