共 51 条
Deformable microparticles for shuttling nanoparticles to the vascular wall
被引:35
作者:
Fish, Margaret B.
[1
]
Banka, Alison L.
[1
]
Braunreuther, Margaret
[1
,6
]
Fromen, Catherine A.
[1
]
Kelley, William J.
[1
]
Lee, Jonathan
[1
]
Adili, Reheman
[2
]
Holinstat, Michael
[2
,3
]
Eniola-Adefeso, Omolola
[1
,4
,5
]
机构:
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Pharmacol, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Samuel & Jean Frankel Cardiovasc Ctr, Dept Cardiovasc Med, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Macromol Sci & Engn Program, Ann Arbor, MI 48109 USA
[6] Stanford Univ, Chem Engn, 443 Via Ortega,Shriram Ctr Room 129, Stanford, CA 94305 USA
关键词:
All Open Access;
Gold;
Green;
D O I:
10.1126/sciadv.abe0143
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Vascular-targeted drug carriers must localize to the wall (i.e., marginate) and adhere to a diseased endothelium to achieve clinical utility. The particle size has been reported as a critical physical property prescribing particle margination in vitro and in vivo blood flows. Different transport process steps yield conflicting requirements-microparticles are optimal for margination, but nanoparticles are better for intracellular or tissue delivery. Here, we evaluate deformable hydrogel microparticles as carriers for transporting nanoparticles to a diseased vascular wall. Depending on microparticle modulus, nanoparticle-loaded poly(ethylene glycol)-based hydrogel microparticles delivered significantly more 50- nm nanoparticles to the vessel wall than freely injected nanoparticles alone, resulting in >3000% delivery increase. This work demonstrates the benefit of optimizing microparticles' efficient margination to enhance nanocarriers' transport to the vascular wall.
引用
收藏
页数:11
相关论文