Radiation doses to patients undergoing scoliosis radiography

被引:17
作者
Chamberlain, CC [1 ]
Huda, W [1 ]
Hojnowski, LS [1 ]
Perkins, A [1 ]
Scaramuzzino, A [1 ]
机构
[1] SUNY Upstate Med Univ, Dept Radiol, Syracuse, NY 13210 USA
关键词
D O I
10.1259/bjr.73.872.11026860
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In this study we computed the radiation doses associated with scoliosis radiography and investigated how these radiation doses are influenced by the weight of the patient. We recorded the radiographic technique factors of 61 consecutive patients (46 females and 15 males) undergoing scoliosis radiography. A wedge-shaped aluminium filter attenuated the X-ray beam in the "chest region" relative to the "abdomen region". X-ray tube air kerma output factors (mu Gy mAs(-1)) and half value layers (HVLs) were determined experimentally for the "chest region" and "abdomen region". The energy imparted to each patient was computed from the air kerma area product, X-ray beam HVL and measured patient thickness. Values of patient effective dose were obtained using effective dose-to-energy conversion factors for specified radiographic projections, taking into account each patient's weight. The median patient age was 17 years, and the median patient weight was 53 kg. Entrance skin air karma values in the "chest region" were approximately a factor of four lower than those in the "abdomen region". The air kerma values increased by a factor of two when the patient weight increased from 30 kg to 70 kg. Approximately 80% of the total energy imparted to a patient undergoing a scoliosis examination was in the "abdomen region", with the remaining 20% imparted to the "chest region". Energy imparted increased with patient weight, and was approximately 3 mJ for a 30 kg patient and approximately 8 mJ for a 70 kg adult patient. Effective doses showed little correlation with patient weight, with an average-sized patient (50 kg) receiving an effective dose of approximately 140 mu SV Patients undergoing scoliosis radiography receive effective doses that are low in comparison with other types of radiographic examination.
引用
收藏
页码:847 / 853
页数:7
相关论文
共 19 条
[1]  
DeSmet A. A., 1985, RADIOLOGY SPINAL CUR
[2]  
FAULKNER K, 1992, RADIAT PROT DOSIM, V43, P131
[3]   Computation of energy imparted in diagnostic radiology [J].
Gkanatsios, NA ;
Huda, W .
MEDICAL PHYSICS, 1997, 24 (04) :571-579
[5]   Effective dose and energy imparted in diagnostic radiology [J].
Huda, W ;
Gkanatsios, NA .
MEDICAL PHYSICS, 1997, 24 (08) :1311-1316
[6]   Radiation dosimetry in diagnostic radiology [J].
Huda, W .
AMERICAN JOURNAL OF ROENTGENOLOGY, 1997, 169 (06) :1487-1488
[7]  
International Commission on Radiological Protection, 1990, ICRP PUBL, V60, P21
[8]   EFFECTIVE DOSE EQUIVALENT FROM RADIOPHARMACEUTICALS [J].
JOHANSSON, L ;
MATTSSON, S ;
NOSSLIN, B .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE, 1984, 9 (11) :485-489
[9]  
KANE WJ, 1977, CLIN ORTHOP RELAT R, P43
[10]   RISKS OF EXPOSURE TO X-RAYS IN PATIENTS UNDERGOING LONG-TERM TREATMENT FOR SCOLIOSIS [J].
NASH, CL ;
GREGG, EC ;
BROWN, RH ;
PILLAI, K .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1979, 61 (03) :371-374